
Towards Graphical Query Notation for Semantic

Databases

Kārlis Čerāns, Jūlija Ovčiņņikova, Mārtiņš Zviedris

karlis.cerans@lumii.lv, julija.ovcinnikova@lumii.lv, martins.zviedris@lumii.lv
Institute of Mathematics and Computer Science, University of Latvia

Raina blvd. 29, Riga, LV-1459, Latvia

Abstract. We describe a notation and a tool for schema-enabled
visual/diagrammatic creation of SPARQL queries over RDF databases. The
notation and the tool support both the standard basic query pattern comprising a
main query class and possibly linked condition classes and means for aggregate
query definition and placing conditions over aggregates including also
aggregation of aggregate results. We discuss the applicability of the tool for ad-
hoc query formulation in practical use cases.

Keywords: Visual query creation, SPARQL, RDF databases, Semantic
technologies

1 Introduction

The semantic technologies built around the RDF [1,2], OWL [3] and SPARQL [4]
standards are the basis for the Semantic Web [5] and Linked Data [6], as well as they
may well be used in enterprise-level use cases. The semantic technologies offer much
higher-level view on data than do the classic relational databases (RDB) with their
corresponding SQL query language thus enabling more direct involvement of various
domain experts in data set definition, exploration and analysis.

The availability of the data in the semantic information landscape is ensured
mainly via mappings into RDF/OWL from original data sets in various formats,
notably the relational databases, where exists a W3C mapping standard R2RML [7],
as well as numerous mapping formalisms (see e.g. Virtuoso RDF Views [8], D2RQ
[9], ontop [10] and RDB2OWL [11]). The RDF data stores such as Virtuoso [8] and
Stardog [12] provide native RDF data storage possibility.

The classical approach to data access in relational databases involves creating user
interface applications for common operations over the data and then asking
programmers to create on-demand SQL queries in the case of non-standard
information requests. A similar approach can be followed also in the case of RDF
databases and SPARQL queries, however, this approach will not respond to the
expectation for the direct domain expert involvement in the data access. Therefore a
number of approaches such as ViziQuer [13,14] and Optique VQS [15] for
visual/diagrammatic creation of SPARQL queries have emerged. The practical

experience with the ViziQuer tool with the medical domain experts have confirmed
the importance of the visual query creation concept, however, it has also confirmed a
further need in support of aggregate query generation that is a very typical custom
query kind over the data. The problem addressed in this paper is presenting a visual
query notation and tool for aggregate query definition and translation into SPARQL.

We base the work on the availability of the aggregate queries in SPARQL version
1.1. [4]. The task of visual/diagrammatic query creation is quite challenging since the
diagrammatic notations for aggregates in the queries is not common even for query
creating systems also in the much widely established area of RDB/SQL databases.

In the rest of the paper we introduce first the basic visual query notation, including
already the simplest patterns for aggregate query construction, followed by direct
grouping and subquery constructs usable for more involved query generation. The
practical use aspects of the approach is discussed in the final section of the paper. The
illustrations in the paper are given on a mini-University example, however they can
be carried over directly to more practical use cases, including the medical domain.

2 Basic Query Notation

This section outlines the basic visual query SPARQL notation, including specification
of class information, attribute selection, conditions and links, similar to [13,14], as
well as new simple aggregate attribute definition. The visual/diagrammatic query
generation is based on the data schema definition as OWL ontology or RDF Schema;
for the construction illustration we shall use the following mini-University ontology,
presented in Figure 1 in graphical OWLGrEd1 ontology editor notation [16].

FacultyLevel
acadTitle

Nationality
nCode

nValue

Thing

Student
studentName{<personName}

studentNumber

Teacher
salary:decimal

facu ltyLevel:Facu ltyLevel

AcademicProgram
programName

{disjoint}

Course
courseName

courseCode

courseCredits :integer

courseExtIn fo

Registration
datePaid:dateTime

dateCompleted:dateTime

mark:integer

Person
personName

personID

nationality:Nationality

includes

course1

enrolled1

takes

student

1

teaches

Fig. 1. Example: a mini-University ontology in the OWLGrEd notation

Figure 2 illustrates two basic visual queries and their corresponding SPARQL queries.
The first query selects all student names, student ID and student card ID. The second
query selects all successful completed registrations (mark >= 4) for large courses (at

1 The ontology editor can be downloaded from http://owlgred.lumii.lv/

least 6 credit points) and displays mark, student name and course name2. Each query
contains a single main query class (shown as orange round rectangle) as well as
possibly a number of condition classes (shown as violet rectangles), linked to the
query class via links corresponding to the object properties between the classes in the
ontology (chains of condition classes and links from condition classes to the main
class are allowed, as well). Each of the class boxes in the query represents an instance
resource belonging to the class. The class attributes (shown in white letters) define
instance properties (attributes) that are to be included in the query output. The
conditions (shown in pink/dark) restrict the rows to be returned by the query.

Student

n = studentName

nr = studentNumber

personID

Select ?n ?nr ?personID WHERE {

?student a ont:Student.

?student ont:studentName ?n.

?student ont:studentNumber ?nr.

?student ont:personID ?personID}

Course
courseCredits >= 6

cn = courseName

Registration
R

mark >= 4

mark

order by cn, mark DESC Student
sn = studentName

Select ?mark ?sn ?cn WHERE {

?r a ont:Registration. ?r ont:student ?student.

?student a ont:Student.

?student ont:studentName ?sn.

?r ont:course ?course. ?course a ont:Course.

?course ont:courseName ?cn. ?r ont:mark ?mark.

?course ont:courseCredits ?courseCredits.

FILTER (?mark >=4)

FILTER (?courseCredits >= 6)}

ORDER BY ?cn DESC(?mark)

course

student

Fig. 2. Basic query examples

The queries in Figure 2 contain just the attribute values, not the URIs of the involved
instance resources. The inclusion of the instance URI in the query output can be
specified either with <<select>> stereotype for the class, or by including the class
instance name (e.g. R for Registration) into the attribute list for the class.

Figure 3 shows the optional attribute (marked by the keyword OPTIONAL) and
optional link notation (as the blue dashed line) as well as a negation link (marked in
red and the stereotype {not}). The whole query fragments placed behind the optional
or negation links (from the viewpoint of the main query class) are in optional or
negation group. If a negation link connects class instances that are already connected,
as in Figure 4 example, it is to be interpreted as a condition asserting non-existence of
the respective link, after the query structure has been created from the other
“structural” links. We use the {condition} stereotype on the link to mark its condition
semantics; this stereotype can be used also on affirmative/positive edges, asserting the
existence of the respective link (the optional link with the {condition} mark makes a
void requirement on the query contents). The non-condition loops including negation
or optional links are not allowed. There is a requirement for the entire diagram to be
connected via non-condition links; if the query logics would require several non-
connected components, they are to be connected with un-labelled strict or optional
links marking the query structure.

2 The prefix ont: in the examples stands for http://lumii.lv/ontologies/UnivExample.owl# that is

the URI for the mini-University ontology itself.

Registration
mark >= 7

Nationality
NN

nCode

NN

select ?s ?n ?p ?nCode ?nn WHERE {

?s a ont:Student. ?s ont:studentName ?n.

OPTIONAL {?s ont:personID ?p}

OPTIONAL {?s ont:nationality ?nn.

 ?nn a ont:Nationality.

 ?nn ont:nCode ?nCode.}

FILTER NOT EXISTS {

 ?r a ont:Registration. ?r ont:student ?s.

 ?r ont:mark ?mark. FILTER (?mark>=7)}}

<< select >>

Student
S

n=studentName

optional p=personID
student {not}

nationality

Fig. 3. Explicit instance names, instance URI selection; optional and negation links

Student
sn=studentName

AcademicProgram

Course
cn=courseName

select ?sn ?cn WHERE {

 ?student a ont:Student.

 ?student ont:studentName ?sn.

 ?student ont:enrolled ?academ icProgram.

 ?academicProgram a ont:AcademicProgram.

 ?academicProgram ont:includes ?course.

 ?course a ont:Course.

 ?course ont:courseName ?cn.

 FILTER NOT EXISTS {?student ont:takes ?course}}

includes

takes {condition} {not}

enrolled

Fig. 4. Negated condition link: select names of students and courses with the student not

taking a course included in academic program (s)he is enrolled in.

One can use the combination of structural and condition links in the query to
formulate queries involving universal quantification, expressed using double
negations. For instance, the query “find all students taking all courses of the academic
program they are enrolled in”, is demonstrated in Figure 5 via “find all students not
enrolled in academic program including a course the student is not taking.” A
corresponding query with the structural semantics of both negation links would not be
allowed due to the loop with two structural negations emerging.

AcademicProgram
P

Course
C

Select ?n ?s WHERE {

 ?s a ont:Student. ?s ont:studentName ?n.

 FILTER NOT EXISTS {

 ?s ont:enrolled ?p.

 ?p a ont:AcademicProgram.

 ?p ont:includes ?c. ?c a ont:Course.

 FILTER NOT EXISTS {?s ont:takes ?c.}}}

<< select >>

Student
S

n=studentName

enrolled {not}

includes

takes {condition} {not}

Fig. 5. Double negation: structural and condition negations determine the query structure.

The basic query notation allows for simple aggregate query introduction in the case, if
the grouping set for all aggregate function applications coincides with the set of all
selected non-aggregate attributes in the query. An aggregate attribute is introduced as
an expression where the aggregate function (count, sum, avg, min, max,
group_concat) is applied to the attribute name; the aggregation over the instance URI
is possible also via the <<count>> or <<count distinct>> stereotype for the class.

The SPARQL query for such a simple aggregated query is generated in two steps:
first, for every class instance with aggregate attributes a SPARQL-subquery is
generated involving the aggregated attributes from this class instance and the
grouping set of all non-aggregated attributes in the query; then all subqueries are
joined together into a single SPARQL query (cf. examples in Figure 6 and Figure 7).

Figure 6 contains two examples, where, first, a student name is selected together
with the corresponding count of taken courses and sum of credits within those,
restricting the result rows to those having course credit sum at least 9. The conditions
in the query classes are evaluated before aggregate applications, therefore the row
filter depending on the aggregate value is defined in the having-compartment of the
class box. The other example shows listing the different courseCredits values together
with the count of courses corresponding to each of these values.

Course

cc=count(Course)

ss=sum(courseCredits)

Student
S

sn=studentName
having ss>=9

select ?sn ?cc ?ss WHERE { FILTER (?ss>=9)

{select ?sn (count(?Course) as ?cc)

 (sum(?courseCredits) as ?ss) WHERE {

 ?s a ont:Student. ?s ont:studentName ?sn.

 ?s ont:takes ?Course.

 ?Course ont:courseCredits ?courseCredits.}

 group by ?sn}}

takes

select ?courseCredits ?count_of_Course WHERE {

{select ?courseCredits

 (count(?Course) as ?count_of_Course) WHERE {

 ?Course a ont:Course. ?Course ont:courseCredits ?courseCredits.}

group by ?courseCredits }}

<< count >>

Course

courseCredits

Fig. 6. Simple aggregation: basic examples

Figure 7 describes a query for finding student names together with both sum of credits
for the student in all courses, and in “big” courses with at least 6 credit points each.

Course

courseCredits>=6

cBig=sum(courseCredits)

Course

cAll=sum(courseCredits)

Student

sn=studentName

SELECT ?sn ?cAll ?cBig WHERE {

 {SELECT ?sn (SUM(?cc) AS ?cAll) WHERE

 {?s a ont:Student. ?s ont:studentName ?sn.

 OPTIONAL {?c1 a ont:Course. ?s ont:takes ?c1.

 ?c1 ont:courseCredits ?cc.}

 } GROUP BY ?sn}

 {SELECT ?sn (SUM(?cc) AS ?cBig) WHERE

 {?s a ont:Student. ?s ont:studentName ?sn.

 OPTIONAL {?c2 a ont:Course. ?s ont:takes ?c2.

 ?c2 ont:courseCredits ?cc. FILTER (?cc>=6)}

 } GROUP BY ?sn} }

takes

takes

Fig. 7. Simple aggregation: optional links and multiple-class aggregates

3 Explicit Grouping and Subqueries

The outlined basic query constructions cover a large range of practical queries that
may arise in the exploration of the mini-University example, as well as in the
practical use cases of query formulation over hospital information system and clinical
records databases. There are, however, natural queries not fitting naturally the basic
query pattern due to involving the aggregate-over-aggregate pattern, e.g.:

A. Count all students taking at least three courses (count-over-counts).
B. Find all courses passed by at least 10 students with mean mark (over all passed

courses) at least 7 (filtered counts over filtered aggregate expressions).
C. List all different years for the course completion dates together with the count

of different marks received in this year at least 10 times.
We introduce an explicit {group} stereotype for affirmative and optional links. Its
semantics is splitting the query diagram into “main” part towards the main query class

side of the {group} link and subquery part behind the other end of the link, with the
further design assumption that the URI of the instance on the “main” end of the link,
as well as the link itself also participates in the subquery, making the “join condition”
between the subquery and the main query. The {group} stereotype is not compatible
with {condition} stereotype, nor is it to be used for negation links. The general query
shape has to be a tree of simple components (i.e. components built with non-condition
and non-group links), linked by {group}-links; the {condition}-links are allowed only
within a single component, or from within a component to its incoming {group}-link
source node. Figure 8 shows the A-C queries in the visual query notation.

<< count >>

Student
count_of_C >= 3

<< count>>

Course
C

<< select >>

Course
having count_of_S >= 10

<< count >>

Student
S

cm/cc >= 7

select ?c where { filter (?cs>=10)

 {select ?c (count(?s) as ?cs) where {?c a ont:Course. ?s ont:takes ?c.

 {select ?s where { filter (?cm/?cc>=7)

 {select ?s (sum(?cr) as ?cc) (sum(?m*?cr) as ?cm) where {

 ?s a ont:Student. ?r1 a ont:Registration. ?r1 ont:student ?s.

 ?c1 a ont:Course. ?r1 ont:course ?c1. ?r1 ont:mark ?m.

 ?c1 ont:courseCredits ?cr.} group by ?s } }}} group by ?c }}

Registration
R

Course
C1

cc=sum(courseCredits)

cm=sum(R.mark*courseCredits)

Registration
R1

mark=R.mark

YEAR(dateCompleted)=YEAR(R.dateCompleted)

cr = count(R1)

Registration
R

cr >= 10

mc = count(distinct mark)

y=YEAR(dateCompleted)

takes {group}

course

inv(student) {group}

takes

{group}

Fig. 8. Visual queries with explicit grouping.

There is also the option of introducing and using explicit named subqueries in the
visual language. While the {group}-links in the query diagram may often appear to be
an easier mechanism of involved query specification, the named subqueries would
correspond to “derived concept” introduction and allow easier query reuse. Figure 9
shows the B example query definition and usage in the named subquery notation.

GoodStudent

Course
C1

cc=sum(courseCredits)

cm=sum(R.mark*courseCredits)

<< select >>

Student
having cm/cc >= 7

Registration
R

<< select >>

Course
having count_of_S >= 10

<< count >>

GoodStudent
S

course

student

takes

Fig. 9. A named subquery example

The visual query language provides also means for query result set limiting to a
number of rows (the SPARQL LIMIT construction). Although one could easily add to

the visual query language this notation also on the subquery level (including the inline
and named subqueries), the SPARQL language the queries are translated into does not
contain at least direct means for expressing this type of constructs. Therefore such an
important query pattern as “find all x with their related most common y” (e.g. find all
courses with the most often received marks in them) cannot be directly offered for
practical usage. The practical workaround to this limitation would be to re-formulate
the queries with LIMIT-bound subqueries in a way that they return larger result sets
from which the needed results can easily be obtained e.g. in a spreadsheet.

4 Discussion and Conclusions

We aim at practical visual query formulation system creation over data via their
conceptual structure view. As the initial experiments show, most of the practically
interesting queries both in the hospital information system and clinical records data-
base use cases can be formulated using the provided notation. The notation and tool
polishing is certainly worth to be continued including the offering of the query tool to
the domain experts. There would be need in a query creation methodology and initial
training before the domain experts would be ready to use the query tool themselves.

The notation described in this paper has a prototype implementation in the
ViziQuer tool3. The ViziQuer tool can be used for SPARQL query creation over any
SPARQL endpoints with their data RDF schema available. The work in [14]
discusses RDF schema extraction from a SPARQL endpoint. [17] outlines the
possibility of using ViziQuer in the context of relational database semantic re-
engineering, where a conceptual model of a relational database is created as an OWL
ontology, then the mapping from the RDB to the ontology is described, enabling
creation of the ontology-structured SPARQL endpoint that can accept queries created
in ViziQuer. The limitation of SPARQL not allowing row-level aggregate subqueries
with TOP/LIMIT restrictions (such queries would not be problematic e.g. in SQL)
may lead to considerations of direct translations from the visual query language to
SQL that would be well defined within the RDB semantic re-engineering framework.

A less considered query language aspect in this paper is the language of
expressions allowed in conditions and query output definition. The idea of translating
expressions into SPARQL is based on supporting SPARQL-like expression syntax in
the language, with the extensions allowing instance references and data attribute
names to stand for resources and their properties respectively. The practical use cases
have shown the possibility of expression creation and translation, however, the date
manipulation functions available in SPARQL standard [4] are clearly insufficient for
practical queries e.g. concerning duration calculation based on the available date or
datetime values. Notably, the Virtuoso RDF data store [8] supports the extensions
allowing the necessary date and interval value handling. For the RDB semantic re-
engineering use case this entails the necessity of creating and storing RDB-to-RDF
dump into a triple store, instead of using an on-the-fly maintained SPARQL endpoint.

3 http://viziquer.lumii.lv/

Acknowledgements

This work has been supported by European Union within the ERDF project ‘Granular
ontology tools for data analysis’ (Project No. 2DP/2.1.1.1.0/14/APIA/VIAA/072) and
Latvian State Research program NexIT project No.1 'Technologies of ontologies,
semantic web and security'.

References

1. Resource Description Framework (RDF), http://www.w3.org/RDF/
2. RDF Schema [WWW] http://www.w3.org/TR/rdf-schema/
3. Motik, B; Patel-Schneider P.F; Parsia B.: OWL 2 Web Ontology Language Structural

Specification and Functional-Style Syntax, 2009
4. SPARQL 1.1 Overview. W3C Recommendation 21 March 2013 [WWW]

http://www.w3.org/TR/sparql11-overview/
5. Linked Data, http://linkeddata.org
6. Tim Berners-Lee, James Hendler and Ora Lassila, "The Semantic Web", Scientific

American, May 2001, p. 29-37.
7. R2RML: RDB to RDF Mapping Language, http://www.w3.org/TR/r2rml/
8. C.Blakeley: “RDF Views of SQL Data (Declarative SQL Schema to RDF Mapping)”,

OpenLink Software, 2007.
9. D2RQ Platform. Treating Non-RDF Relational Databases as Virtual RDF Graphs.

http://www4.wiwiss.fu-berlin.de/bizer/D2RQ/spec/
10. Bagosi, T., Calvanese, D., Hardi, J., Komla-Ebri, S., Lanti, D., Rezk, M., Rodriguez-Muro,

M., Slusnys, M., & Xiao, G. (2014). The Ontop framework for ontology based data access.
In Zhao, D., Du, J., Wang, H., Wang, P., Ji, D., & Pan, J. Z. (Eds.), CSWS 2014,
Vol. 480 of Communications in Computer and Information Science, pp. 67-77. Springer.

11. K.Čerāns, G.Būmans, RDB2OWL: a RDB-to-RDF/OWL Mapping Specification
Language // J.Barzdins and M.Kirikova (eds.), Databases and Information Systems VI,
IOS Press 2011, p.139-152.

12. Stardog, http://stardog.com/
13. G.Barzdins, E.Liepins, M.Veilande, M.Zviedris: Semantic Latvia Approach in the

Medical Domain. // Proc. 8th International Baltic Conference on Databases and
Information Systems. H.M.Haav, A.Kalja (eds.), TUT Press, pp. 89-102. (2008).

14. Zviedris M., Barzdins G. (2011), ViziQuer: A Tool to Explore and Query SPARQL
Endpoints, // The Semantic Web: Research and Applications, LNCS, 2011, Volume
6644/2011, pp. 441-445

15. A. Soylu, M. Giese, E. Jiménez-Ruiz, E. Kharlamov, D. Zheleznyakov, and I. Horrocks.
OptiqueVQS: Towards an Ontology based Visual Query System for Big Data. In:
MEDES. 2013.

16. Barzdins, J.; Cerans, K.; Liepins, R.; Sprogis, A.: UML Style Graphical Notation and
Editor for OWL 2. In Proc. of BIR’2010, LNBIP, Springer 2010, vol. 64, p. 102-113.

17. K. Cerans, G. Barzdins, G. Bumans, J. Ovcinnikova, S. Rikacovs, A. Romane and M.
Zviedris. A Relational Database Semantic Re-Engineering Technology and Tools // Baltic
Journal of Modern Computing (BJMC), Vol. 3 (2014), No. 3, pp. 183-198.

