
A UML-style Visual Query Environment over DBPedia

Kārlis Čerāns[0000-0002-0154-5294], Lelde Lāce [0000-0001-7650-2355],

Mikus Grasmanis [0000-0002-0668-0970] and Jūlija Ovčiņņikova [0000-0002-5884-763X]

Institute of Mathematics and Computer Science, University of Latvia

{karlis.cerans, lelde.lace, mikus.grasmanis,

julija.ovcinnikova}@lumii.lv

Abstract. We describe and demonstrate a prototype of a UML-style visual query

environment over DBPedia that allows query seeding with any class or property

present in the data endpoint and provides for context-sensitive query growing

based on class-to-property and property-to-property mappings. To handle map-

pings that connect more than 480 thousand classes and more than 50 thousand

properties, a hybrid approach of mapping pre-computation and storage is pro-

posed, where the property information for “large” classes is stored in a database,

while for “small” classes and for individuals the matching property information

is retrieved from the data endpoint on-the-fly. The created schema information is

used to back the query seeding and growing in the ViziQuer tool. The schema

server and the schema database contents can be re-used also in other applications

that require DBPedia class and property linking information.

Keywords: DBPedia, SPARQL, Visual Queries, ViziQuer, RDF data schema

1 Introduction

DBPedia [1],[2] is one of the central Linked Data resources and is of fundamental im-

portance to the entire Linked Data ecosystem. DBPedia extracts structured information

from Wikipedia1 - the most popular collaboratively maintained encyclopedia on the

web. A public DBPedia SPARQL endpoint2, representing its “core” data, is a large and

heterogeneous resource with over 480 thousand classes and over 50 thousand proper-

ties, making it difficult to find and extract the relevant information. The existing means

for DBPedia data querying and exploration involve textual SPARQL query formulation

and some research prototypes that offer assisted query composition options, as e.g.,

RDF Explorer [3], that do not reach the ability to use effectively the actual DBPedia

schema information to support the query creation by end-users.

There is a DBPedia ontology that consists of 769 classes and 1431 properties (as of

July 2021); it can be fully or partially loaded into generic query environments, as

1 https://www.wikipedia.org/
2 http://dbpedia.org/sparql

SPARKLIS [4] (based on natural language snippets), or Optique VQs [5,6] or ViziQuer

[7] (based on visual diagrammatic query presentation). The DBPedia ontology alone

would, however, be rather insufficient in supporting the query building process, as it

covers just a tiny fraction of actual DBPedia data classes and there are quite prominent

classes and properties in the data set (e.g., the class foaf:Document, or any class from

yago: namespace, or the property foaf:name) that are not present in the ontology.

We describe here services for the DBPedia data retrieval query composition assis-

tance, running in real time, based on the full DBPedia data schema involving all its

classes, all properties, and their relations (e.g., what properties are relevant for instances

of what classes; both class-to-property and property-to-property relevance connections

are considered). We apply the developed services to seeding and growing visual queries

within the visual ViziQuer environment (cf. [7],[8]), however, the services can be made

available also for schema-based query code completion in different environments, in-

cluding the ones for textual SPARQL query composition, as e.g., YASGUI [9].

Due to the size of the data endpoint we pre-compute the class-to-property and prop-

erty-to-property relevance mappings, using then the stored information to support the

query creation. We limit pre-computation of the class-to-property mapping just for suf-

ficiently large classes as most classes would have way less instances than the connected

properties (for smaller classes the on-the-fly completion approach is used).

The principal novelty of the paper is:

- a method for auto-completing queries, based on the class-to-property and

property-to-property connections, working over the actual DBPedia data

schema in real time, and

- a visual query environment for exploration and querying of a very large and

heterogeneous dataset, as DBPedia is.

The papers’ supporting material including a live server environment for visual que-

ries over DBPedia can be accessed from its support site http://viziquer.lumii.lv/dss/.

In what follows, Section 2 outlines the query completion task. The query completion

solution architecture is described in Section 3. Section 4 describes the DBPedia schema

extraction process to build up the data schema necessary for query completion. The

visual query creation is described in Section 5. Section 6 concludes the paper.

2 Query Completion Task

A diagrammatic presentation of a query over RDF data is typically based on nodes

and edges, where a node corresponds to a query variable or a resource (or a literal) and

an edge, labelled by a property path, describes a link between the nodes. A UML-style

query diagram (as in ViziQuer [7], Optique VQs [5] or LinDA [10]) would also provide

an option (in some notations, a request) to specify the class information for a variable

or a resource represented by the node. Furthermore, some links of the abstract query

graph can be presented in the UML-style query notation as node attributes.

The presence of a class information for a variable or a resource in a query, facilitated

by the UML style query presentation, could facilitate the query readability. Still, this

would not preclude queries that have nodes with empty class specification (cf. [8]).

Figure 1 shows example visual queries corresponding to some of QALD-4 tasks3 4,

suitable for execution over DBPedia SPARQL endpoint, in the ViziQuer notation (cf.

[8] and [11] for the notation and tool explanation).

Figure 1. Example visual queries. Each query is a connected graph with a main query node

(orange round rectangle) and possibly linked connection classes. Each node corresponds to a

variable (usually left implicit) or a resource and an optional class name. There can be selection

and aggregation attributes in a node. The edges correspond to properties (paths) linking the

node variables/resources. [8] also describes more advanced query constructs.

From the auto-completion viewpoint a query can be viewed as a graph with nodes

allowing entity specifications in the positions of classes and individuals and edges able

to hold property names5.

The process of the visual query creation by an end-user starts with query initializa-

tion or query seeding and is followed by query expanding, or query growing6. Within

each of these stages the query environment is expected to assist the end-user by offering

the names from the entity vocabulary (involving classes, properties, possibly also indi-

viduals) that would make sense in the query position to be filled.

The simplest or context-free approach for the entity name suggestion would provide

the entities for positions in a query just by their type – a class, a data property, or an

object property (or an individual). This approach can provide reasonable results, if the

user is ready to type in textual fragments of the entity name. The “most typical” names

that can be offered to the user without any name fragment typing still can be signifi-

cantly dependent on the context information where the entity is to be placed.

Another approach, followed e.g., by SPARKLIS [4] or RDF Explorer [3] would be

presenting only those extensions of a query that would lead to a query with non-empty

solutions (if taken together with the already existing query part). In the case of a large

data endpoint, as DBPedia is, this would not be feasible, as even the simple queries to

the endpoint asking for all properties that are available for instances of a large class

typically do time-out or have running times not suitable for on-the-fly execution.

3 http://qald.aksw.org/index.php?x=task1&q=4
4 cf. also http://www.irisa.fr/LIS/ferre/sparklis/examples.html
5 Even if the query has a more complicated structure, the completion suggestions are computed

on the basis of the described simple node-edge model.
6 The same applies also to query building in other (e.g.textual) notations.

We propose to use an in-between path by suggesting to the end-user the entity names

that are compatible with some local fragment of the existing query (these are the entity

names that make sense in their immediate context). We shall follow a complete ap-

proach in a sense that all names leading to an existing solution of the extended query

need to be included into the suggestion set (possibly after the name fragment entry),

however the names not leading to a solution can sometimes be admitted, as well.

In a schema-based query environment the main context element for a property name

suggestion would be a class name, however, suggestion of a class name in the context

of a property and suggestion of a connected property in the context of an existing prop-

erty would be important to support the property-centered modeling style, and to enable

efficient auto-completion within a textual property path expression entry7 (after a prop-

erty name within an expression, only its “follower” properties are to be suggested, along

with inverses of those properties whose triples can have common object with the last

property from the already entered part of the property path).

3 Query Completion Principles

In what follows, we describe the principles of the query completion that can be shown

to efficiently serve both the query seeding and context-aware query growing tasks for

a SPARQL endpoint, as DBPedia core, with more than 480 thousand classes and more

than 50 thousand properties, offering the text-search, filtering and prioritization options

over the target linked entity sets. The query completion method has been implemented

within a data shape server8 (also called schema server), featuring the example environ-

ments over the DBPedia core and other data sets.

3.1 Entity Mapping Types

The query completion on the data schema level is based on class-to-property and prop-

erty-to-property relations, observing separately the outgoing and incoming properties

for a class9, and “following”, “common subject” and “common object” modes for the

property-property relations. The relations shall be navigable in both directions, so:

- the class-to-property (outgoing) relation can be used to compute the outgoing

properties for a class, and source classes for a property,

- the class-to-property (incoming) relation can be used to compute the incoming

properties for a class, and target classes for a property,

- the “following” property-property relation can be used for computing “follow-

ers” and “precursors” of a property.

7 For DBPedia core the direct property-property relation is much smaller than the property-prop-

erty relation derived from the property-class-property mappings. For endpoints with less sub-

classing and the class structure more fully representing the property availability, the property-

property mapping derived from the property-class-property relation may be sufficient.
8 https://github.com/LUMII-Syslab/data-shape-server
9 A property p is outgoing (resp., incoming) for a class c, if there is a c instance that is subject

(resp., object) for some triple having p as its property.

For each of the mappings it is important to have the list of suggested entities ordered

so that the “most relevant” entities can be suggested first. To implement a context-

aware relevance measure, we compute the triple pattern counts for each pair in the class-

to-property and property-to-property relations; for the class-to-property (outgoing) re-

lation also the counts of “data triple” patterns and “object triple” patterns are computed

separately. An entity X is higher in the list of entities corresponding to Y, if the triple

pattern count for the pair (X,Y) is higher10.

For query fragments involving an individual, the means shall be available for re-

trieving all classes the individual belongs to, all properties for which the individual is

the subject (the properties “outgoing” from an individual) and for which the individual

is the object (the properties “incoming” into the individual). We expect that the data

SPARQL endpoint shall be able to answer queries of this type efficiently.

A further query completion task is to compute the individuals belonging to a class

or available in the context of a given property (the class-to-individual, property-to-in-

dividual (subject) and property-to-individual (object) mappings). Since these mappings

may return large sets of results for an argument class or property (e.g., around 1.7 mil-

lion instances of dbo:Person class in DBPedia core), a text search with entity name

fragment within the results is necessary. Such a search can be reasonably run over the

SPARQL endpoint for classes with less than 100000 instances. For larger classes the

suggested approach in query creation would be to start by filling the individual position

first (using some index for the individual lookup as e.g., DBPedia Lookup11).

The solution that we propose can also provide linked entity (property, class, individ-

ual) suggestion from several initial entities; this is achieved (logically) by computing

the linked entity lists independently for each initial entity and then intersecting12.

3.2 Partial Class-to-Property Mapping Storage

The modern database technologies would allow storing and serving to the query envi-

ronment the full class-to-property and property-to-property relations13. Still, this may

be considered not effective for a heterogeneous data endpoint, as DBPedia is, where for

about 95 percent of classes the number of class instances is lower than the number of

properties that characterize these instances. Out of 483 748 classes in the DBPedia core

there have been 93 321 classes (around 19 percent) with just a single instance; in this

case only a single link from the class to an instance is available in data. To record the

relation of such a singleton class to the properties, all properties that the class instance

exhibits, would need to be recorded. Since an instance may belong to several classes,

such full storage of the class-to-property mapping is considered superfluous.

10 In the case of a heterogeneous endpoint, as DBPedia core is, the computation of local frequency

of target instances in a context can give substantially different results from looking at the

global “size” of the target entity.
11 https://lookup.dbpedia.org/
12 if a class c corresponds to both a property p and a property q, it is going to be suggested in a

context of both p and q, although there may be no instance of c with values for both p and q
13 There are about 35 million rows in the class-to-property (outgoing) relation in DBPedia core;

the class-to-property (incoming) relation is much smaller.

Therefore, we propose to pre-compute and store the class-to-property relation just

for a fraction of classes (we call them “large” classes), and to rely on the information

retrieval from the data endpoint itself, if the class size falls below a certain threshold14

(regarding the property-property relation, our current proposal is to store it in full).

The partial storing of the class-to-property relation does not impede the possibility

to compute the linked property lists for a given class, since for the classes that are not

“large”, these lists can be efficiently served by the data SPARQL endpoint15.

The property-to-class direction of such a “partially stored” class-to-property relation

becomes trickier, as, given a property, only the large classes are those that can be di-

rectly retrieved from the data schema. In order not to lose any relevant class name sug-

gestions, we assign (and pre-compute) to any “small” class its representing superclass

from the “large” classes set (we take the smallest of the large superclasses for the class).

There turn out to be 154 small classes without a large superclass in the DBPedia end-

point (in accordance with the identified superclass information); the property links are

to be pre-computed for these classes, to achieve complete class name suggestion lists.

The effect of suggested extra small classes in the context of a property can be ana-

lyzed. We note that in the DBPedia core out of top 5000 largest properties just 50 would

have more small classes than the large ones within the source top 30 class UI window;

in the case of target classes the number would be 190; so, the potentially non-exact

class name suggestions are not going to have a major impact on the user interface (low-

ering the large class threshold would lower also the extra suggestion ratio even further).

3.3 Schema Server Implementation and Experiments

The schema server is implemented as REST API, responding to GET inquiries for (i)

the list of known ontologies, (ii) the list of namespaces, (iii) the list of classes (possibly

with text filter) and (iv) the list of properties (possibly with text filter), and POST in-

quiries for computing a list of classes, properties, and individuals in a context. The

POST inquiries can specify query limit, text filter, lists of allowed or excluded

namespaces, result ordering expression and the data endpoint URL; Further on there is

a query context element, involving a class name (except for class name completion),

individual URI (except for individual completion) and two lists of properties – the in-

coming and the outgoing ones; in the case of property completion, the context infor-

mation sets can be created for both their subject and object positions.

The parameters of the schema server operations allow tuning the entity suggestion

list selection and presentation to the end user. They are used in the visual tool user

interface customization, in applying specific namespace conditions, or featuring Basic

and Full lists of properties in a context, as illustrated in Section 5.

A preliminary check of the schema server efficiency has found that the operations

for suggesting classes and properties in a context perform reasonably, as shown in Table

14 Within our initial prototype version, the class-to-property mapping is pre-computed for top

3000 largest classes; these classes contain at least about 1000 instances each.
15 In the case of the DBPedia core endpoint the size of such a list for classes with less than 1000

instances typically do not exceed a few hundred.

1. For each of the link computation positions at least 10 source instances that can be

expected to have the highest running times (e.g., the largest entities) are considered and

the maximum of the found running times is listed.

The experiments with the schema server have been performed on a single-laptop

(32GB RAM) installation of the visual tool, with the PostgreSQL database over the

local network and remote access to the public DBPedia endpoint16 as the data set; the

query time is measured by the printouts from the schema server JavaScript code.

Table 1. Entity list suggestion timing estimates

 Time upper

estimate

Top 30 classes (all classes, dbo: namespace only, all except yago:),

with possible text filter

259 ms

Top 30 properties (all properties, object properties, data properties),

with possible text filter

412 ms

c→p links (data and object out properties), from a large class 882 ms

c→p extended links (in/out object properties, with other end

range/domain class, if available), from a large class

2141 ms

c→p links (data and object out properties), from a small class 2438 ms

c→p extended links (out and in object properties, with other end

range/domain class, if available), from a small class

1148 ms

p→p links (data and object out properties), from incoming and out-

going properties

577 ms

p→p extended links (in/out object properties, with other end range/

domain class, if available), from incoming and outgoing properties

2760 ms

p→c links, from an in and an out property (including the large clas-

ses only and both the large and small classes suggestion cases).

269 ms

We note that the queries for computing the entities in a multiple context, do not tend

to blow up the execution time, if compared to the single-context inquiries.

4 Data Schema Retrieval

Some of the data endpoints may have an ontology that describes its data structure; how-

ever, it may well be the case that the ontology does not describe the actual data structure

fully (e.g., including all classes, all properties and all their connections present in the

data set)17, therefore we consider retrieving the data from the SPARQL endpoint itself18.

The extraction of small and medium-sized schemas can be performed by methods

described in e.g., [12] and [13]. We outline here retrieving the DBPedia schema.

16 http://dbpedia.org/sparql
17 The DBPedia ontology covers just a tiny fraction of the actual DBPedia core data structure.
18 The data owner or a person having access to the data dump can also have other options of

producing the data schema.

The DBPedia core schema retrieval has been done from a local copy, installed from

DBPedia Databus site19 (the copy of December 2020).

The basic data retrieval involves the following generic steps that can be followed on

other endpoints, as well:

1) Retrieve all classes (entities that have some instance), together with their in-

stance count20.

2) Retrieve all properties, together with their triple count, their object triple

count (triples, where the object is an URI) and the literal triple count.

3) For classes deemed to be “large”21, compute the sets of its incoming and out-

going properties, with respective triple counts, including also object triple

count and literal triple count for outgoing properties. For the classes, where

direct computation of properties does not give results (e.g. due to the query

timeout), check the instance counts for all (class,property) pairs separately22.

4) Retrieve the property-property relations, recording the situations, when one

property can follow the other (a), or both properties can have a common sub-

ject (b), or a common object (c), together with the triple pattern counts.

5) Pre-compute the property domain and range information, where possible (by

checking, if the source/target class for a property with largest property triple

count is its domain/range).

6) Create the list of namespaces and link the classes and properties to them.

The following additional schema enrichment and tuning operations are performed,

using the specifics of the DBPedia endpoint organization

7) Compute the display names for classes and properties to coincide with the

entity local name, with some DBPedia-specific adjustments:

a. If the local name ends in a long number (as some yago: namespace

classes do), replace the number part by ‘..’, followed by the last 2-4

digits of the number allowing to disambiguate the display names),

b. If the local name contains ‘/’, surround it by [[and]],

c. For the wikidata: namespace, fetch the class labels from wikidata23

and use the labels (enclosed in [[and]]) as display names.

8) Note the sub-class relation24 (to be used in the class tree presentation, and in

determining the “representative” large classes for small classes).

9) Note the class equivalence relation, to allow the non-local classes to be “rep-

resented” by the local ones in the initial class list.

19 https://databus.dbpedia.org/dbpedia/collections/latest-core
20 this requires setting up a local DBPedia instance to enable queries with 500K result set, split

e.g., in chunks of 100K, we order the classes by their instance count descending
21 currently, the 3000 largest classes; the class count, or size threshold is introduced by the user;

the optimal level of the threshold can be discussed.
22 we did the detailed computations automatically for classes larger than 500K instances
23 http://query.wikidata.org/
24 From the explicitly stated ontology and the sub-class-of assertions in the main data graph.

10) For each “small” class, compute its smallest “large” super-class (for use in

the property-to-class mapping to suggest also the “small” class names). Per-

form the step (3) for “small” classes that do not have any “large” superclass.

The schema extraction process currently is semi-automated. It can be expected that

after a full automation and some optimizations it would be able to complete within a

couple of days. The process can be repeated for new DBPedia configurations and data

releases. The database size on the PostgreSQL server (including the tables and indi-

ces) amounts to about 20 GB. The dump of the database for the currently analyzed

DBPedia endpoint can be accessed from the paper’s supporting website.

5 Visual Query Creation

To enable the creation of visual queries over DBPedia (cf. Figure 1 in Section 2), the

ViziQuer tool [7] has been connected to the data schema server and enriched by new

features involving: (i) new shape of the class tree, (ii) means for query seeding by prop-

erties and individuals, and (iii) search-boxes for names in attribute and link dialogues

and for classes in the node property pane.

Figure 2. Schema tree examples in the visual query tool: top classes except from yago:

namespace, filtered classes, top properties

The implementation of the tool allows also for endpoint-specific extensions to cus-

tomize the tool appearance while working on specific data endpoints.

The created ViziQuer/DSS tool can be accessed from the paper’s supporting website.

We briefly explain the visual environment elements that enable the schema-sup-

ported query creation experience, relying on the schema server API, (cf. Section 3).

For the query seeding there are tabs with class, property and individual selection, the

class tab can show either the full list of classes, or the full list of classes without the

dominating yago: namespace, or just the dbo: namespace classes (the top classes of the

first two choices are in Figure 2); the properties in their tab can be listed either in the

basic (moving down the dbp: namespace properties and a few more “housekeeping”

properties), or in the full mode (ordering just by the triple count descending). The prop-

erty search can be restricted to either data or object properties only (a property of “dual

nature” would be present in both lists). Both the class and property lists are efficiently

searchable. There is also an option to obtain a list of subclasses for a class. Double click

on an item in any of the tabs, initiates a new query from this element.

The main tools for query growing are the attribute and link addition dialogues, illus-

trated in Figure 3, in the context of the dbo:Language class (cf. Figure 1); both basic

and full lists of attributes and links are illustrated. In the link list the principal (range or

domain) class is added, if available in the data schema for the property; the lists are

efficiently searchable, as well.

Figure 3. Top attribute and link suggestions in the context of dbo:Language class and out-

going property spokenIn: top of basic and full attribute lists, top of basic and full link lists

If a query has been started by a property or an individual, there is an option to fill in

the class name (in the element’s property pane to the right of the diagram) from the

class name suggestions created in the context of the selected node and its environment

in the diagram. Figure 4 illustrates the class name suggestion in the context of an out-

going property dbo:spokenIn.

The created visual environment can be used both for Exploration and Querying of

the data endpoint (DBPedia).

Figure 4. Visual diagram after selection of dbo:spokenIn property from the initial property

list, and following class name suggestion for its source class

The exploration would allow obtaining the overview of the classes and properties in

the textual pane, together with their size, the subclass relation in the class tree is sup-

ported based on the subclass data retrieved from the data endpoint. The class and prop-

erty lists can be filtered, so allowing to reach any of the 480K classes and 50K proper-

ties. For each class and property its surrounding context is available (starting from most

important classes/properties), as well as the queries over the data can be made from any

point reached during the exploration phase (the exploration can be used to determine

the entities for further query seeding).

Within the data querying options, the environment provides the visual querying ben-

efits (demonstrated e.g., in [5] and [11]) in the work with the data endpoint of principal

importance and substantial size. The environment would allow creating all queries from

e.g., the QALD-4 dataset, however, the end user experience with query creation would

need to be evaluated within a future work.

6 Conclusions

We have described a method enabling auto-completion of queries based on actual class-

to-property and property-to-property mappings for the DBPedia data endpoint with

more than 480 thousand classes and more than 50 thousand properties by using hybrid

method for accessing the stored data schema and the data endpoint itself.

The created data schema extraction process can be repeated over different versions

of the DBPedia, as well as over other data endpoints, so creating query environments

over the datasets that need to be explored or analyzed. The open-source code of the

visual tool and the data schema server allows adding custom elements to the environ-

ment that are important for quality user interface creation over user-supplied data.

An interesting future task would be also moving the schema data (currently stored

on PostgreSQL server) into an RDF triple store to enable easier sharing of endpoint

data schemas as resources themselves and processing the schema data themselves by

means of visual queries and integrating them with other Linked Data resources. An

issue to be addressed would be the efficiency of the schema-level queries over the data

store, however, it can be conjectured that a reasonable efficiency could be achieved.

The technical replacement of the PostgreSQL server by an RDF triple store (and gen-

erating SPARQL queries instead of SQL ones) is not expected to be a major challenge

since the schema server architecture singles out the schema database querying module.

Acknowledgements

This work has been partially supported by a Latvian Science Council Grant lzp-2020/2-

0188 “Visual Ontology-Based Queries”.

References

1. Bizer, C., Lehmann, J., Kobilarov, G., Auer, S., Becker, C., Cyganiak, R., Hellmann, S.

(2009). “DBpedia - A crystallization point for the Web of Data” (PDF). Web Semantics:

Science, Services and Agents on the World Wide Web. 7 (3): 154–165.

2. Lehmann, J., Isele, R., Jakob, M., Jentzsch, A., Kontokostas, D., Mendes, P.N., Hellmann,

S., Morsey, M., Van Kleef, P., Auer, S. and Bizer, C. DBpedia - a large-scale, multilingual

knowledge base extracted from Wikipedia. Semantic Web 6(2), 167–195 (2015)

3. Vargas, H., Buil-Aranda, C., Hogan, A. and López, C. RDF Explorer: A Visual SPARQL

Query Builder, Proc. of ISWC 2019, pp 647-663, Springer LNCS.

4. Ferré, S.: Sparklis: An expressive query builder for SPARQL endpoints with guidance in

natural language, Semantic Web, 2017, Vol 8, pp 405-418

5. Soylu, A., Giese, M., Jimenez-Ruiz, E., Vega-Gorgojo, G.., Horrocks, I.: Experiencing

OptiqueVQS: A Multi-paradigm and Ontology-based Visual Query System for End Users.

Universal Access in the Information Society, March 2016, Volume 15, Issue 1, pp 129–152.

6. Klungre, V. N., Soylu, A., Jimenez-Ruiz, E., Kharlamov, E., & Giese, M. (2019). Query

Extension Suggestions for Visual Query Systems Through Ontology Projection and Index-

ing. New Generation Computing, 37(4), 361-392.

7. Čerāns, K., Šostaks, A., Bojārs, U., Ovčiņņikova, J., Lāce, L., Grasmanis, M. Romāne, A.,

Sproģis, A., Bārzdiņš, J. ViziQuer: A Web-Based Tool for Visual Diagrammatic Queries

Over RDF Data. In: ESWC 2018 Satellite Events. LNCS, vol 11155, pp. 158-163, 2018.

8. Čerāns, K., Bārzdiņš, J, Šostaks, A., Ovčiņņikova, J., Lāce, L., Grasmanis, M. and Sproģis,

A. Extended UML Class Diagram Constructs for Visual SPARQL Queries in ViziQuer/web

In Voila!2017, CEUR Workshop Proceedings, Vol.1947, (2017) pp.87-98.

9. YASGUI, https://yasgui.triply.cc/

10. Kapourani, B., Fotopoulou, E., Papaspyros, D., Zafeiropoulos, A., Mouzakitis, S., Koussou-

ris, S., Propelling SMEs Business Intelligence Through Linked Data Production and Con-

sumption, In OTM 2015 Workshops pp 107-116.

11. Čerāns, K., Šostaks, A., Bojārs, U., Bārzdiņš, J., Ovčiņņikova, J., Lāce, L., Grasmanis, M.

and Sproģis, A., ViziQuer: A Visual Notation for RDF Data Analysis Queries. In Research

Conference on Metadata and Semantics Research. Springer CCIS, Vol.846, pp.50-62, 2018

12. Dudáš, M., Svátek, V., Mynarz, J.: Dataset summary visualization with LODSight. In: The

12th Extended Semantic Web Conference (ESWC2015).

13. Čerāns, K., Ovčiņņikova, J., Bojārs, U., Grasmanis, M., Lāce, L. and Romāne, A., Schema-

Backed Visual Queries over Europeana and Other Linked Data Resources. In The Semantic

Web: ESWC 2021 Satellite Events. Springer LNCS, Vol.12739, pp.82-87, 2021

http://dbpedia.org/
http://dbpedia.org/
http://dbpedia.org/

