
Visual Presentation and Summarization of Linked Data

Schemas

Lelde Lāce[0000-0001-7650-2355], Aiga Romāne-Ritmane[0009-0003-3609-1485],

Mikus Grasmanis[0000-0002-0668-0970], Artūrs Sproģis[0000-0002-2320-0887],

Jūlija Ovčiņņikova[0000-0002-5884-763X], Uldis Bojārs[0000-0001-7444-565X],

Kārlis Čerāns1[0000-0002-0154-5294]

 Institute of Mathematics and Computer Science, University of Latvia, Riga, Latvia
1 karlis.cerans@lumii.lv

Abstract. A visually presented schema of a data set can help its user to gain

understanding about its contents and use an appropriate vocabulary to build que-

ries or develop applications accessing it. Still, most of Linked Open Data sets are

provided without available visual schemas and for data sets of realistic size the

schemas may be way too large to be visualized on a suitable diagramming canvas.

In this paper we develop a concept of visualization-oriented data schema, involv-

ing property ascription point information and propose a method for creating vis-

ual presentations of the data schemas, including both the detailed schema visual-

ization and visual schema summarization options. We evaluate the method on 24

prominent data sets from the Linked Open data cloud, where it can obtain legible

visualizations of the full schema or at least its fragment.

Keywords: RDF, SPARQL, Linked data, Knowledge graph schema, Visual

schema diagram

1 Introduction

Understanding the structure and contents of a Knowledge Graph is important for any

user action over it, be that ad hoc data querying or building data consuming applica-

tions. The data structure presentation allows seeing if the data set contains the relevant

information and in what form (e.g., using what vocabulary) it has been encoded.

A well-known means of data structure description is the data schema that is based

on the data set entity (class and property) vocabularies and their connections.

An abstract data schema that involves a class and property mapping or its encoding

in RDF data shape language, as SHACL [1] or ShEx [2], can be useful for machine

processing, including data validation, user interface form generation or context-aware

entity name suggestion e.g., during auto-completion of the text of a query over the data.

For human perception a meaningful visual presentation of the data schema would well

complement the textual schema presentation as it could invoke the user’s visual per-

ception capabilities in schema understanding.

Still, a visual presentation of a data schema in the paradigm of a graph of attributed

nodes and edges faces a natural limitation of the size of the graph that can be expected

to help the schema perception; often this size shall be less that the number of relevant

entities making the data set structure.

To respond to this problem, we investigate the possibilities of presenting the sche-

mas of knowledge graphs in the style of UML class diagrams (representing the classes

as nodes and the properties as links or as attributes). We aim at legible presentations of

possibly large schemas by developing methods that (i) recognize the relevance of a

class as a property source or target and (ii) allow to merge nodes of classes with similar

instance incoming and outgoing property characteristics.

We build upon related work that involves on-the-fly computing of schema diagram

fragments in LD-VOWL [3] and LODSight [4] (with limitations regarding the schema

and the data set size, as well as the details included in the schema), automated means

for data schema extraction as (enriched) SHACL shapes (cf. [5]) and abstract class-to-

property mappings (cf. [6]), as well as data schema visualization in various notations,

involving VOWL [7], OWLGrEd [8], RDFShape [9] and ViziQuer [10].

The main contributions of this paper are:

- describing a mathematical framework for an extended data schema notation,

that involves the relevance markers for property ascription at classes,

- developing a method for visual compact data schema representation, allowing

to obtain legible summaries for data schemas with well over 100 classes, and

- presenting a library of schema summary or fragment visualizations for 24

prominent data sets from the Linked Open Data1 cloud.

In what follows, Section 2 provides further Related work details and Section 3 pre-

sents the data schema and schema graph concepts. Section 4 then describes basic

schema diagrams; Section 5 presents the schema summarization and Section 6 de-

scribes the implementation and evaluation. Finally, Section 7 concludes the paper.

The schema visualization methods have been integrated within the open-source Vi-

ziQuer tool2 (where also visual SPARQL query creation is supported). The resources

supporting the paper, including the data schema visualizations and the used software

startup options are available from https://github.com/LUMII-Syslab/viziquer-tools-

lod24. The schema visualization can be performed on ViziQuer Playground3, as well.

2 Related Work

The visual presentation of relational database schemas is common in most of major

database management systems as well as in a variety of custom database handling tools.

Still, these tools, as the entire relational database management framework, work on the

technical level of tables, columns, and links, therefore they can be considered just as a

source of inspiration for the solutions in the knowledge graph and semantic data area.

In the knowledge graph and semantic technology realm there are visual notations

and tools for presenting OWL ontologies, such as VOWL [7], OntoDia [11], and

1 https://lod-cloud.net/
2 https://github.com/LUMII-Syslab/viziquer
3 https://viziquer.app

OWLGrEd [8] (cf. also [12] for an overview of ontology visualization methods). Visual

ontology editors such as ChOWLk [13] and OWLGrEd allow visual ontology author-

ing, as well. There are also visualization tools for RDF data shape notations SHACL

and ShEx, including, e.g., RDFShape [9], Shacl Play! [14] and shacl2plantUML [15].

To obtain the visualization of the actual data schema using some of these tools, the data

schema would need to be described in the respective notation first.

The methods for automated extraction of data shapes from a data set have been

attracting research recently, as well, including [5], where a method of extracting an

enriched SHACL description of the data set structure from the data dump in .n3 format

has been provided. Still, the existing tools for SHACL extraction have not yet been

evaluated together with the tools for SHACL visualization. It is also not clear how the

SHACL specifications would encode the subclass relation essential for compact schema

presentation in the UML class diagram form (e.g., so that a property does not get as-

cribed both to a super-class and a subclass).

 The idea of automatically extracting the schema from an RDF data set has already

been explored in [16], where the schema presentation in the form of a UML-style dia-

gram is considered and compact schema presentations are discussed, as well. Notably,

this work discusses the need to mine the subclass relation from the data set, although

the implementation yielding mixed results. The options for creating the summary dia-

grams also seem limited to including one “most popular” or “most distinctive” data and

object property for a class in the summary diagram, leaving open a desire for obtaining

summary diagrams with richer contents.

A recent prominent RDF data summarization tool is RDFQuotient [17] that allows

computing the data summary nodes and their relations just from the data set contents,

paying attention also to the data resource class information. Although the tool would

have an option of re-locating a property ascription from a subclass to a superclass, the

possibilities of its finer-grained interaction with the abstraction possibilities and custom

class node merging are less clear and the available examples of legible created data

structure diagrams are quite size-limited.

Some of early end-user tools allowing visualization of existing Linked Data set

schemas involve LD-VOWL [3] and LODSight [4]. These approaches attempt to create

the visual data set structure on-the-fly, as the user starts to look at the upcoming diagram

(which is quite admirable). Still, this imposes limitations on the size of the data schemas

that can be analysed and on the details that can be included with each of the obtained

data schemas.

The process of extracting a data schema from the data set by means of a series of

SPARQL queries has been conceptually outlined in an earlier work by the authors [6],

as well, where the schema had been made available for a visual query environment. An

initial experiment of visualizing smaller-scale data set schemas (with up to 50 classes)

using a limited schema compacting approach and an external diagram visualization

module has been described in [10]. This work has been substantially expanded here in

terms of mathematical precision, refinement of compacting methods, and expanding

their reach to diagrams of schemas with well over 100 classes, simplified architecture

(web-based schema diagram management), and presenting a library of 24 large data

sets from the Linked Open Data cloud.

3 Data Schema Graphs

We start the description of the knowledge graph (KG) schema, and the schema graph

concepts by introducing the used notation to describe the knowledge graphs themselves.

A knowledge graph K=(R,L,C,P,rc,T) consists of a set of resources R (involving

both external resources Re (corresponding to IRIs) and internal resources Ri (corre-

sponding to blank nodes)), a set of literals L, a set of classes C, a set of predicates P

(we allow P to overlap with Re), a resource class assignment rc: R->2^C and a set of

triples T  R  P  (RL); we write (x a c) for crc(x) and simply (x,y,z) for (x,y,z)T.

If not specified otherwise, we shall assume that the knowledge graph K is given

throughout the rest of this section and shall refer to its components by the notation

introduced in the previous paragraph.

Given the KG K, let its schema S(K) be (C,P,cp,pc,cpc,cc,#C,#P,#cp.#pc.#cpc), where

- C is the set of K classes, P is the set of K properties, #C(c)=#{x|(x a c)} (# is

the set size) and #P(p)=#{(x,y)|(x,p,y)} for cC and pP,

- cpCP and pcCP are sets of class-to-property and property-to-class links

and cpcCPC is the set of class-property-class links such that:

o #cp(c,p)=#{(x,y)|(x a c)  (x,p,y)} and (c,p)cp  #cp(c,p) > 0,

o #pc(p,c)=#{(x,y)|(x a c)  (y,p,x)} and (p,c)pc  #pc(p,c) > 0, and

o #cpc(c1,p,c2)=#{(x,y)|(x a c1)  (x,p,y)  (y a c2)} and (c1,p,c2)cpc

 #cpc(c1,p,c2) > 0.

- ccCC is the sublass relation (the set of subclass-to-superclass pairs), i.e.

(c1,c2)cc whenever (x a c1) (x a c2) for all x.

We write (c1,c2)cc+, if c1 is a strict transitive subclass of c2, and c1~c2, if c1=c2,

(c1,c2)cc+ or (c2,c1)cc+ (i.e., c1 is a (transitive) subclass or superclass of c2).

For a data schema we define its projection to (C’,P’,cc’), where C’C, P’P and

cc’cc by restricting also the cp, pc and cpc components accordingly (the class re-

striction induces minimal necessary restriction on cc, as well). The schema projection

concept provides a well-defined meaning to fragments of the full KG schema if the

class and property sets are restricted; the restriction of subclass relation (besides the

restriction due to the smaller class set) allows working with schema variants with lim-

ited information about the subclass relation.

There is a natural presentation of the schema in a form of an attributed graph with

the schema classes as nodes and the cpc relation as property-labelled links among clas-

ses, while the cp and pc relations are encoded in node attributes designated to hold lists

of properties outgoing from and incoming into the respective classes. The cc relation

shall be encoded by dedicated subclass links among the nodes in the schema graph. The

respective size information can be added to the graph using further decorations.

Drawing the full schema graph (in the presence of a non-empty subclass relation)

may quickly indicate an overload of connections, e.g., due to ascribing properties both

to the superclasses and subclasses. Figure 1 contains an illustration of a fragment of a

simple Nobel Prizes data schema (cf. Figure 2 for the full schema and source credit),

including the full class and property connections (left) and only the “essential” ones

(right).

Figure 1. Full (left) and essential (right) class and property connection example

To prepare for reduced schema graph presentation we first define the markers for

determining the relevance of a class in the property source or target context.

Given a property p, a class set A C is a principal source class set for p, if

- for any class c and resource x, (x a c)  (x,p,y) implies d A for some d ~ c

such that (x a d) (coverage condition),

- if c1A and c2A such that c1 c2, then (c1 ~ c2) (minimality condition: no

property is ascribed both to a subclass and a superclass), and

- if (x,p,y)  (x a c) (i.e., c is (ontological) domain for p) and (c,d)cc+, then

d A (specificity condition: no property is ascribed to a superclass if it suffices

to ascribe it to a subclass).

The principal source class set is the set of classes that characterizes the property

presence at the schema class instances: if a property p is present at instances of some

class c, then either p is ascribed to the class c itself or to some its superclass, or all

instances of c that possess the property p are split among the subclasses of c that each

has the property p ascribed to it. On the other hand, the minimality and specificity con-

ditions guarantee that the property ascription is not too verbose (having unnecessary

property ascription points) or too generic.

We note that in general the principal source class set for a property can be non-

unique, e.g., if ci  c for i=1,2,3, and the property p applies to instances of c1 and c2,

but not to instances of c3, then either the ascription of p to c, or the ascription of p to

both c1 and c2 would allow to obtain a principal source class set.

We define a principal target class set B for p in a similar (dual) way:

- (y a c)  (x,p,y) implies d B for some d ~ c such that (y a d) (coverage),

- if c1B and c2B such that c1 c2, then (c1 ~ c2) (minimality), and

- if (x,p,y)  (y a c), and (c,d) cc+ then dA (specificity).

Further on, the principal target and source class sets are similarly defined for a prop-

erty in its “other end” class context.

For a property p and its source class c a class set B is a principal target class set, if:

- (x a c)  (x,p,y)  (y a c’) implies dB for some d ~ c’ s.t. (y a d) (coverage),

- if c1 B and c2 B such that c1 c2, then (c1 ~ c2) (minimality), and

- if ((x a c)  (x,p,y))  (y a c’) and (c’,d) cc+, then dA (specificity).

For a property p and its target class c a principal source class set is defined similarly.

The non-uniqueness observation applies to the principal target class sets for a prop-

erty, and principal source and target class sets for a property in a context, as well.

Although the concepts of the principal source and target class sets for a property are

defined on the level of the KG; one can compute some such principal sets just from the

information of the KG schema (the frequency/count information # is essential here).

To compute for a property p a principal source class set, denoted by PS(p), let

src(p)=c1,c2,..,ck be the sequence of all p source classes c (having (c,p)cp), ordered by

their triple count #cp(ci,p) descending, then (if the triple counts are equal) by the class

size #c(ci) ascending (a smaller class (e.g., a subclass) comes before a larger class).

Consider then all classes c1,c2,..,ck from src(p) in the index ascension order and include

ci in PS(p) if no c’~ci (i.e., no subclass or superclass of ci) is already in PS(p).

The computed set PS(p) is a principal source class set for p:

- If (x a c) and (x,p,y) then c is in src(p) and either cPS(p), or c is not included

in PS(p) because of some c’ PS(p) such that c~c’. This establishes the cover-

age condition.

- The minimality follows from not including any c into PS(p), if there already is

some c’PS(p) such that c~c’.

- Regarding the specificity, let (x,p,y)  (x a c) and (c,d)cc+. Let n=#cp(c,p).

By (x,p,y)  (x a c) we have #cp(c’,p)  n for any c’.

Since c is in src(p), then either (i) cPS(p), or (ii) c2PS(p) for some c0 such

that c0  c, c0 ~ c and c0 is before c in src(p).

Since #cp(c0,p) n=#cp(c,p), the ordering of src(p) entails #cp(c0,p)=n and

#C(c0) #C(c), what excludes (c,c0)cc+, so (c0,c)cc+.

So, in either case, (c*,d)cc+ for some c*PS(p) such that c* is before d in

src(p) (c* is either c, if cPS(p), or c0 otherwise); this implies dPS(p), qed.

Note. If the specificity condition would be dropped, a simple way of computing the

(simplified) principal source and target class sets would be just to consider the maximal

classes (according to the subclass relation) in the respective source/target class sets. In

the example of Figure 1, this would lead to all properties ascribed to :Award, so missing

important details of, e.g., :isPartOf connecting just :LaureateAward to :NobelPrize.

Although the provided algorithm computes the principal source/target class sets for

properties just from the data schema, we propose to work with enriched data schemas,

where the principal class sets for properties are pre-computed. The presence of the data

set itself in the process of the principal class set computation provides options for var-

ying the algorithm to include more specific principal classes, e.g., when a property can

be ascribed to several, but not all, subclasses of a given general class. Since the subclass

relation computation can be resource-demanding, the schema enrichments built over a

weaker version of the coverage condition that does not rely on the subclass relation can

be considered, as well, if the data set is available during the enrichment process.

We also extend the schema information with cardinalities, that can be specified ei-

ther for a property in general, or for a property in a class context. The property domain

and range information (in the exclusive, ontological sense) can be ascribed to the prop-

erties, as well. Such information, if available, can be further on included in the schema

diagram so making it more informative to its users (cf. Section 4)4.

4 Further schema constructs may involve, for instance, property adjacency relations (e.g., what

properties can “follow” a given property, or what properties can have common subjects or

common objects); this information can be important, e.g., if the schema is used to support

autocompletion of queries over the data set. We do not focus on these aspects here, as they

are less relevant to the current task of constructing schema presentation.

4 Basic Schema Diagrams

A schema diagram can be created from an extended data schema (with principality

markers and, optionally, the cardinality and domain and range information, included)

by depicting the schema classes as diagram nodes and showing the properties ascribed

to a node either as node attributes or as links outgoing from a node. We shall have a

property ascribed (in the attribute and/or the link form) to its principal source classes.

For each pair (c,p), where c is in the principal source class set of p we shall draw an

edge from the node corresponding to c, labelled by the property p, to each class c’ in

the principal target class set of p in the context of the source class c.

Note the asymmetry of the source and target ends of the class connections by the

properties; this allows to obtain well-defined semantics of the created schema diagrams

in the chosen schema visualization approach.

A property p ascribed to a class c is depicted as an attribute of the c node, if it cannot

be established that all triples (x,p,y) for (x a c) are covered by some edge outgoing from

the c node (i.e., for all y, such that (x a c) and (x,p,y), we have (y a c1) for some c1 with

a p-labelled edge from c into it); skipping the attribute form in the diagram can be done,

e.g., if #cpc(c,p,c’)=#cp(c,p) for some c’.

Figure 2 contains a simple schema of the Nobel Prizes data set5 (for better presenta-

tion an auto-introduced extension with an abstract superclass dbo:City or dbo:Country

is allowed, that collects the attributes and links common to both subclasses). We draw

the subclass-to-superclass relation by dedicated subclass edges in the schema diagram.

The frequency information associated with classes (#c), property availability at clas-

ses (#cp) and links (#cpc) are included in the diagram, as well. Further on, there are car-

dinalities (e.g., [1] and [*]) for properties in the context of the respective source class

(in the case of an attribute presentation) and in the context of the source and target pair

(in the case of a link labelled by a property), as well as domain (marked by D) and range

(marked by R) indications telling if the property appearance place corresponds to the

property domain or range (in the ontological, exclusive sense).

The attribute presentation of a property includes options for describing of the “other

end” of the property links; in Figure 2 such descriptions involve “IRI” (the property

triple objects in the context can be IRIs) and “dgr” (some of the property triples corre-

spond to links drawn in the diagram).

Note that the properties dct:isPartOf at :LaureateAward class and :nobelPrize at

:Laureate are presented both in the link and the attribute forms since not all property

triples in the data have objects that belong to :NobelPrize.

The mark ~ at the frequency of dbo:City or dbo:Country indicates that the size has

been estimated (in this case – calculated as the sum of the subclass sizes, not taking into

account the possibility of the subclass overlapping)6.

5 The data were originally retrieved as a snapshot from https://data.nobelprize.org/sparql and are

available on the paper’s support page.
6 Fine-tuning the diagram by calculating the exact sizes of the aggregated items can, in principle,

be done by consulting the data set itself during the schema diagram creation.

https://data.nobelprize.org/sparql

Figure 2. A Nobel Prizes data schema

5 Advanced Schema Summarization

The described schema visualization method works well just for schemas of limited size,

as visual diagrams with larger node sets and more involved interlinking patterns can

quickly grow beyond easy comprehensibility. To enable the handling of larger schemas,

we introduce the following schema summarization and visual tuning methods:

(i) class node merging (ascribe several classes to a single node; join their at-

tribute and link end lists),

(ii) introducing abstract super-classes, and

(iii) inlining links into attributes (auto-inlining of circular links into dedicated

“looping” attributes and “splitting” certain links into their presentation at

the source node (by “outgoing” attributes) and the target node (by dedicated

“incoming” attributes).

The parameters of the diagram creation can instruct not to do class node merging at

all or to merge just the classes with identical attribute and incoming and outgoing prop-

erty lists. Aside from these basic cases, the class node merging is performed based on

the following principles:

1. For each pair of classes (A,B) their similarity measure s(A,B) and difference

measure d(A,B) are calculated, as follows:

a. s(A,B) = ∑sqrt(min(#(p,A)/#C(A),1) * (min(#(p,B)/#C(B),1))* w(p) over

all properties p incoming into or outgoing out from both A and B. Here

#(p,X) is #pc(p,X) for p incoming into X and #cp(X,p) for p outgoing from X

(we consider all A and B properties here, not only those ascribed to them

in the schema graph). w(p) is the weight assigned to the property p in the

similarity computation (usually w(p)=1; some properties as rdfs:label or

owl:sameAs can be excluded from similarity computation by setting

w(p)=0).

b. d(A,B) = ∑sqrt((min(#(p,A)/#C(A),1))^2 * (#C(A)/(#C(A)+#C(B))) for all

properties (incoming or outgoing) present for the class A and not present

for the class B (the sum is obtained by considering both classes in both

roles).

The intuition is that properties belonging to both classes contribute to their similar-

ity, while the properties belonging to one class and not to the other contribute to their

difference. A larger property is expected to make a larger contribution.

2. Given a size factor ex  0 (typically also ex < 1, sample values are 0, 1/100,

1/10, 1/5 and 1/3) let the ex-weighted similarity and difference measures sw and dw

be as follows (log is decimal logarithm):

a. sw(A,B) = s(A,B) / pow((log(cA)+1)*(log(cB)+1),ex)

b. dw(A,B) = d(A,B) * pow((log(cA)+1)*(log(cB)+1),ex)

The intuition is that smaller classes with the same similarity/difference characteris-

tics shall have higher weighted similarity and lower weighted difference and, so, might

be used in merging faster.

The similarity and difference measures are generalized to groups of classes, as well.

We consider a simple approximate implementation, where the size of the and property

appearance in the group is estimated as the sum of the sizes over all group members

(this is precise, if classes do not overlap; otherwise, an overestimation is possible).

A merged schema then can, in principle, be defined based on clustering of classes

in accordance to some distance function f(A,B), as e.g., dw(A,B)/(sw(A,B)+ε) for a small

ε (some normalization of the function f to make it Euclidean may be necessary).

Our approach, alternatively, gives the user explicit control over the conditions when

the class nodes can be merged, so that the appearance of class names in a single node

can be interpreted as a certain similarity level between these classes (this way we cannot

have a priori guaranties on size of the obtained schema, though).

We introduce a difference threshold G (typical values are 0,2,5,10 and 20) and

consider a pair of classes (A,B):

- similar, if both dw(A,B) < s(A,B) and dw(A,B)<G,

- neutral, if dw(A,B) < s(A,B) and not dw(A,B)<G, and

- different, if not dw(A,B) < s(A,B).

We incrementally build (locally) maximal clusters of classes so that:

- all pairs of classes in a cluster are either similar or neutral, and

- for each class in a cluster at least 50% of the other classes are similar to it.

Should the size of the created clustered data set be above the desired target, another

try with changed ex and G parameters can be done, or a fragment of the schema (in

terms of classes and/or properties), e.g., the largest ones, can be considered. Several

diagrams, based on different property sets, can be created, as well.

The introduction of abstract super-classes, if requested, is based just on the simi-

larity of the classes (or groups of classes) and the properties that are present in at least

two subclasses of the abstract superclass are brought up to the super-class level. This is

a finer diagram abstraction mechanism if compared to the class node merging, as it

allows the distinct properties (attribute and link ends) at each subclass to stay there and

not be brought up to the superclass level. Still, it comes at a cost of introducing an extra

node in the diagram (instead of merging several nodes into one), and its introduction

needs to be justified mainly by simplifying the overall link structure in the diagram

(note that the introduction of the dbo:City or dbo:Country abstract class in Figure 2

allowed to merge the links both from foaf:Person and foaf:Organization, as well as the

entire attribute list from both subclasses).

There are two types of conditions that induce the inlining of a property link into

the nodes of its ends (at each end keeping the information of the other property ends):

- maximum number of same-property edges in a diagram (e.g., 7), and

- a minimum number of triples for a property to be shown as line is set.

Figure 3 contains a presentation of an example schema of StarWars data set [18],

obtained using the described schema summarization method (there are 51 classes in the

data set, summarized into 13 nodes (the node Wookie et.al. is obtained as summariza-

tion of 36 classes); the presentation of the diagram in the tool allows seeing the class

and property list elements that are not included in the visual presentation, as well).

Figure 3. StarWars data schema example

6 Implementation and Evaluation

The visual schema presentation assumes the availability of an (enriched) data schema,

as described in Section 3. To enable work with schemas of realistic size, we have the

schemas pre-computed. We use the open-source OBIS Schema Extractor tool7 that re-

trieves the schema from a SPARQL endpoint. The schemas are stored using the Data

Shape Server (DSS) tool8 (both schema storage and schema serving functionality in-

cluded) and then are seamlessly accessed from the ViziQuer tool environment, where

both the schema visualization and schema-based visual queries (cf. [19]) are available.

The links to the live examples of the considered schemas on ViziQuer playground, as

well as a Docker-based environment for setting up and running the examples locally

are provided on the paper support resource.

The schema visualization is initiated by the ‘Data Schema’ button in the ViziQuer

environment project (diagram list) view, after what the window with parameter setup

is opened. The parameters to be tuned involve the list of classes and properties to be

visualized (there are sliders available for choosing the largest classes and/or properties,

as well as manual options for selecting classes and properties) and the diagram merging

parameters: merging strength (difference threshold in Section 5), size factor (cf. Sec-

tion 5) and link inlining parameters (number of same-property lines and triple count

threshold). After the parameters have been set, there is an option (via the button ‘Show

merged classes’) to see the counts of nodes and links, as well as the contents of nodes

that are going to be created in the diagram. At this point the parameters can be adjusted

to ensure that the created diagram is going to be of reasonable size. As a rule of thumb,

it would not be recommended to draw diagrams with more than 100 nodes9.

The button ‘Create Schema diagram’ creates the diagram and places a pointer to it

in the project diagram view. When opening the diagram for the first time, it is automat-

ically laid out (it may take a little time), after what it can be observed and manually

tuned by moving the diagram nodes around. For smaller diagrams (around 20 nodes),

the tuning is going to be rather easy, while for larger diagrams it gets more complicated.

If the node count approaches 100, or even if it is about 40 – 60 with a complex line

configuration, it can take a couple of hours for a professional to produce a reasonably

well looking diagram (if the diagram tuning task appears too difficult, another schema

diagram of smaller size (e.g., for a fragment of the schema, or obtained via stronger

compacting parameters) can be created and worked with).

We note that if the property list at a node is too large to be shown in full in the node

box, the full property list can be seen in the side panel, if selecting the respective node.

To evaluate the schema visualization method, we consider 24 prominent Linked

Open Data sets registered in the Linked Open Data cloud10. For specificity, we consider

the data sets meeting the following criteria:

7 https://github.com/LUMII-Syslab/OBIS-SchemaExtractor
8 https://github.com/LUMII-Syslab/data-shape-server
9 Node count above 150 can cause temporal freezing of the system in the current implementation
10 https://lod-cloud.net/lod-data.json

- the data set is available via a SPARQL endpoint (only 145 out of 1584 data sets

had a responsive SPARQL endpoint at the time of the experiment),

- the data set is not a part of multiple data set agglomeration on the same

SPARQL endpoint11 (so the data access information can be uniformly retrieved

from the LOD cloud data file sparql section that does not list named graphs),

- the endpoint triple count, list of classes (with instance count), and the list of

properties (with triple count) are accessible via direct aggregated SPARQL

queries, and the schema extractor produces a valid data schema12,

- the (full) class count is between 15 and 2000, and the property count is below

10000 (the smaller schemas are easy and are well-handled, e.g., in [10]; we do

not pretend to show diagrams of too heterogenous data sets either).

We order the obtained list in descending order by the actual triple count. For the

evaluation, we take the top 21 of the obtained data sets, add a custom AcademySampo

practical data set, and two example data sets (with a reasonably large triple count) from

the foodie cloud aggregation, resulting in 24 data sets for which we create the diagram

visualizations (either the full diagrams, or the fragments with the largest classes). The

diagram visualization experience is summarized in Table 1. The columns Classes and

Properties may contain two numbers each, indicating the full class/property count and

the relevant class/property count (excluding, e.g., the OpenLink Virtuoso system classes

and properties). In the column Lines the numbers are given both for drawing lines of

all sizes (excluding just the same-property lines, if more than 7), and for drawing lines

corresponding to at least 100 triples). The node and line counts, if not stated otherwise,

are given for the maximum strength merging (strong merging (20) and size factor 0); if

the diagram size and appearance permits, larger and semantically more nuanced dia-

grams can be obtained by lowering the merging strength and raising the size factor.

The considered data schemas are available for experimenting on the ViziQuer play-

ground (e.g., creating schema diagrams using various parameters) or by running the

ViziQuer tools software locally. The created schema diagrams are also available both

in the image form and within a project that can be loaded into the visual tool.

Table 1. SPARQL endpoint schema presentation experiment
Endpoint URL Triples Classes Proper-

ties

Nodes Lines Notes

https://li-

bris.kb.se/sparql 2695020210 540 939

225 467(0)
417(100)

A fragment with 40 largest classes
can be shown as a diagram with 22

nodes (larger diagrams are more

difficult due to high line count).

https://sparql.nextpr

ot.org/ 2130123293 165 238

39 66(0)

65(100)

OK

http://affymetrix.
bio2rdf.org/sparql 1377023559 661 1328

132 307(0)

271(100)

A fragment with 100 largest clas-

ses can be shown as a diagram with
45 nodes.

11 This excludes, e.g., the data sets from https://www.foodie-cloud.org/sparql (two data sets are

brought back into the experiment manually), http://publications.europa.eu/webapi/rdf/sparql,

https://linked.opendata.cz/sparql and http://opendatacommunities.org/sparql
12 In the case of the SPARQL endpoints considered here, the extractor had been able to produce

a valid schema in all but one cases when the class and property lists were possible to obtain.

https://libris.kb.se/sparql
https://libris.kb.se/sparql
https://sparql.nextprot.org/
https://sparql.nextprot.org/
https://www.foodie-cloud.org/sparql
https://linked.opendata.cz/sparql

https://ruian.linked.

opendata.cz/sparql 870638775 85 200

43 53(0)

26(100)

OK

http://data.bnf.fr/spa
rql 651506623 38 (26) 886

19 39(0) Basic merging, OK.

http://kaiko.get-

alp.org/sparql 522998164

140

(128)

332

(245)

31 34(0)

28(100)

OK (size factor 1/5 or 1/3 recom-

mended).

http://cr.eionet.

europa.eu/sparql 482077457 272 2001

220 350(0)
308(100)

A fragment with 50 largest classes
can be shown as a diagram with 46

nodes.

http://dati

.isprambi-

ente.it/sparql 385222839

135

(122) 383

86 135(0)

101(100)

Legible diagram (large); for

presentation purposes fragments

can be considered. OK.

http://dati.cam-

era.it/sparql 322885735

104

(92)

367

(283)

61 119(0)

113(100)

OK

http://data.allie

.dbcls.jp/sparql 287461727

55

(43) 201

28 37(0) OK.

http://datos.bne.

es/sparql 258140051 28 (16) 329

15 32(0) Basic merging, OK (externally

fetched labels)13

http://rdf.disgenet.

org/sparql/ 99381703

122

(110) 665

46 78(0)

48(100)

OK.

https://taxref.mnhn.

fr/sparql 82745498

1925

(1913)

697

(608)

58 96(0)

73(100)

OK. (Note: very large namespace

list).

http://opendata.ara-

gon.es/sparql 70049160

218

(206)

1355

(1259)

88 119(0)

103(100)

OK.

Muziekweb14 37114240 30 59
16 20(0)

20(100)
OK.

http://premon.fbk.

eu/sparql 32611819

123

(95)

234

(146)

46 42(0)

36(100)

OK.

http://geo.
linkeddata.

es/sparql 29884998 360 212

41 26(0)
12(100)

OK (textual form of the class
names maintained, as in the data

set).

http://en.openei.org/
sparql 27317782

1612
(1600) 5163

306 209(0)

81(100)

A fragment with 100 largest clas-

ses can be shown as a diagram with
37 nodes.

http://da-
tos.bcn.ck/sparql 52057935 542 357

93 128(0)

115(100)

Large, yet legible diagram. Frag-

ments recommended for the first
impression. OK.

http://id.eau-

france.fr/sparql 17743557 88 (76)

420

(318)

56 58(0)

46(100)

OK.

http://ldf.fi/warsa/sp
arql 14385118 90

310 57 110(0)
96(100)

OK

http://ldf.fi/yoma/spa

rql 6627922 267

123 34 60(0)

53(100)

OK

poi.rdf15
410867958

290
46 5

4116
1(0) OK (subclass lines not counted)

catchrecords Nor-

way17

192867166 18 49 17 17(0)

17(100)

Basic merging, OK.

The performed experiment allows to make the following observations:

13 The labels were not present in the dataset and not all entities had labels provided in a structured

form at the definition page https://datos.bne.es/def/index-en.html
14 https://data.muziekweb.nl/MuziekwebOrganization/Muziekweb/sparql/Muziekweb
15 https://www.foodie-cloud.org/sparql, Named graph: http://www.sdi4apps.eu/poi.rdf

16 Merge equivalent classes only.
17 https://www.foodie-cloud.org/sparql, graph: http://w3id.org/foodie/open/catchrecord/norway/

http://kaiko.getalp.org/sparql
http://kaiko.getalp.org/sparql
http://dati/
http://dati.camera.it/sparql
http://dati.camera.it/sparql
http://data.allie/
http://geo.linkeddata.es/sparql
http://geo.linkeddata.es/sparql
http://geo.linkeddata.es/sparql
https://www.foodie-cloud.org/sparql
http://www.sdi4apps.eu/poi.rdf
https://www.foodie-cloud.org/sparql
http://w3id.org/foodie/open/catchrecord/norway/

- For all considered schemas either full or fragment-based well-legible presenta-

tions can be created (sample diagrams are available in the diagram library).

- For endpoints with up to 200-250 classes legible summaries of the full data

schema can be reasonably expected if strong summarization is applied and if

the properties corresponding to smaller triple counts are inlined. Still, the actual

visual complexity of the diagrams may vary from one data endpoint to another

- It might be worthwhile to attempt summarization of full data set schemas of

larger size, as well (there are successful legible summaries of full schemas for

endpoints with 290, 360, 542 and even 1913 classes in the diagram library).

- The light-weight schema merging techniques (e.g., merging of equivalent clas-

ses or basic merging with higher penalties for large class merging) can be rec-

ommended also for schemas of smaller size, as this would enable both faster

schema summary creation and easier comprehension.

- For the first impression, maximum strength summarization can be chosen with-

out introducing higher summarization penalties for larger classes; in the case

of large line counts consider property inlining. The fragment-based presenta-

tion or considering just a fraction of larger classes can also be beneficial to

obtain the first impression.

7 Conclusions

We have developed a mathematically precise concept of an abstract knowledge graph

schema based on the knowledge graph data classes, properties and their relations (in-

volving the class-to-property and subclass relations) and including the principal prop-

erty ascription points that allow presenting the schema diagram while avoiding the non-

informative property-to-class attachments (e.g., avoiding the display of a property both

at a superclass and at a subclass).

To handle visual presentation of larger schemas that would not fit on a typical dia-

gramming canvas, possible methods for the schema node grouping and property inlin-

ing have been presented. An experiment was conducted in creating visual schema dia-

grams for realistic Linked Open Data sets (with the class limit of 2000 and property

limit of 10000), where for 20 out of 24 data sets the summaries of the full data set

schema has been legibly visualized, while for the rest 4 data sets the schema fragment

visualization has been successfully performed.

The library of the visual schema presentations for the selected data sets has been

created and is offered to the community to support the understanding of the structure

of the these data sets by their users; the schema diagrams are offered both in the visual

image form, as created by the authors of this paper, and in a live form within the Vi-

ziQuer tool, where the interested parties can do further tuning, or create alternative ver-

sions of diagrams using different visualization parameters.

The anticipated further work on visual schema presentation would involve expand-

ing the library of data schema visualizations, systematic comparison of different

schema summarization strategies, and involving potential end users in the evaluation.

Acknowledgments. This work has been supported by the Latvian Science Council Grant lzp-

2021/1-0389 “Visual Queries in Distributed Knowledge Graphs”.

References

1. Shapes Constraint Language (SHACL). W3C Recommendation, 20 July 2017.

https://www.w3.org/TR/shacl/

2. Shape Expressions Language 2.1. Final Community Group Report, 8 October 2019.

https://shex.io/shex-semantics/

3. Weise, M., Lohmann, S., & Haag, F.: Ld-vowl: Extracting and visualizing schema infor-

mation for linked data. In 2nd International Workshop on Visualization and Interaction for

Ontologies and Linked Data, pp. 120-127 (2016).

4. Dudáš, M., Svátek, V., Mynarz, J.: Dataset Summary Visualization with LODSight. In: The

Semantic Web: ESWC 2015 Satellite Events. LNCS, vol. 9341 (2015).

5. Rabbani, K., Lissandrini, M., & Hose, K.: Extraction of validating shapes from very large

knowledge graphs. In Proceedings of the Very Large Databases 2023, 16(5), pp. 1023–1032.

6. Čerāns, K., Ovčiņņikova, J., Bojārs, U., Grasmanis, M., Lāce, L., Romāne, A.: Schema-

Backed Visual Queries over Europeana and Other Linked Data Resources. In Verborgh, R.,

et al. (ed.), ESWC 2021 Satellite Events. Springer LNCS, vol. 12739, pp. 82–87 (2021).

https://doi.org/10.1007/978-3-030-80418-3_15

7. Lohmann, S., Negru, S., Haag F., Ertl, T.: Visualizing Ontologies with VOWL. In: Semantic

Web 7(4), pp. 399–419 (2016).

8. Bārzdiņš, J., Čerāns, K., Liepiņš, R., Sproģis, A.: UML Style Graphical Notation and Editor

for OWL 2. In: Proc. of BIR’2010, LNBIP, Springer 2010, vol. 64, pp. 102–113 (2010).

9. Labra Gayo, J. E., Fernández-Álvarez, D., & Garcıa-González, H.: RDFShape: An RDF

playground based on Shapes. CEUR Workshop Proceedings, vol. 2180 (2018).

10. Lāce. L., Romāne, A., Fedotova, J., Grasmanis, M., Čerāns, K.: A Method and Library for

Visual Data Schemas. To appear in Proc. of ESWC’2024 Satellite Events, Springer LNCS

(2024).

11. Mouromtsev, D., Pavlov, D., Emelyanov, Y., Morozov, A., Razdyakonov, D., Galkin, M.:

The simple, web-based tool for visualization and sharing of semantic data and ontologies.

In: ISWC P&D 2015, CEUR, vol.1486, http://ceur-ws.org/Vol-1486/paper_77.pdf, (2015).

12. Dudáš, M., Lohmann, S., Svátek, V., Pavlov, D.: Ontology visualization methods and

tools: a survey of the state of the art. In: The Knowledge Engineering Review, 33, (2018)

13. Chávez-Feria, S., García-Castro, R., & Poveda-Villalón, M.: Chowlk: from UML-based on-

tology conceptualizations to OWL. In European Semantic Web Conference. Springer

LNCS, vol. 13261, pp. 338–352 (2022). https://doi.org/10.1007/978-3-031-06981-9_20

14. Draw UML from SHACL. https://shacl-play.sparna.fr/play/draw, (last accessed on 2024-

10-24).

15. Shacl2plantuml. https://github.com/rosecky/shacl2plantuml, (last accessed 2024-10-24).

16. Li H., Zhang X.: Visualizing RDF data profile with UML diagram. Springer Proceedings in

Complexity, pp. 273 – 285 (2013). https://doi.org/10.1007/978-1-4614-6880-6_24

17. Goasdoué, F., Guzewicz, P., & Manolescu, I.: RDF graph summarization for first-sight

structure discovery. The VLDB journal, 29(5), pp. 1191–1218 (2020).

18. Star Wars, Example Dataset. Available at https://platform.ontotext.com/semantic-ob-

jects/datasets/star-wars.html (last accessed on 2024-07-05).

19. Čerāns, K., Šostaks, A., Bojārs, U., Ovčiņņikova, J., Lāce, L., Grasmanis, M., Romāne, A.,

Sproģis, A., Bārzdiņš, J.: ViziQuer: A Web-Based Tool for Visual Diagrammatic Queries

Over RDF Data, in ESWC 2018 Satellite Events. ESWC 2018. Springer LNCS, Vol. 11155.

pp. 158–163 (2018). https://doi.org/10.1007/978-3-319-98192-5_30

https://www.w3.org/TR/shacl/
https://shex.io/shex-semantics/
http://ceur-ws.org/Vol-1486/paper_77.pdf
https://shacl-play.sparna.fr/play/draw
https://github.com/rosecky/shacl2plantuml
https://platform.ontotext.com/semantic-objects/datasets/star-wars.html
https://platform.ontotext.com/semantic-objects/datasets/star-wars.html
https://doi.org/10.1007/978-3-319-98192-5_30

