
Schema Fragment Visualization to View Knowledge

Graph Entities in Context

Sandra Siliņa[0009-0000-3917-9026], Lelde Lāce[0000-0001-7650-2355],

Mikus Grasmanis[0000-0002-0668-0970] and Kārlis Čerāns[0000-0002-0154-5294]

Institute of Mathematics and Computer Science, University of Latvia, Riga, Latvia

{sandra.silina, karlis.cerans}@lumii.lv

Abstract. We present a method for visualizing schema fragments of large

knowledge graphs (KGs) to assist users in effectively exploring complex KG

structures. A prototype implementation of schema fragment visualization is of-

fered within the ViziQuer tool, where it complements the existing schema visu-

alization and visual summarization methods.

Keywords: Knowledge graphs, Visual schema diagram, Schema fragments

1 Introduction

Visual presentation of a knowledge graph (KG) schema can help its users compre-

hend the KG structure, as well as to visually perceive the vocabulary of data classes

and data properties used to encode its information.

 A variety of visual KG schema presentation options exist, including visualizers of

KG schema descriptions created in SHACL/ShEx (cf. [1]) or OWL (cf. [2,3]); these

can be used, if the data set schema has been made available in the respective notation.

There are also tools for visualizing the actual data set schema working either on-the-

fly as [4], [5], or via the intermediate schema storage (cf. [6], for schema visualization

inside ViziQuer [7]). The visualizers of SHACL data schemas can be used also in

combination with the SHACL data shape retrieval from the data set (cf. [8]) to obtain

a pipeline of the actual data set structure visualization, as well.

 A hard limitation of the data schema visualization approach, however, is the size of

the data schema that can be drawn on the diagrammatic canvas and further on per-

ceived by a human reader. Recently, [6] has shown that heuristics of grouping togeth-

er classes with similar property characteristics into a single node can effectively re-

duce the number of nodes to be shown within a schema diagram (e.g., 165 classes to

47 nodes for a proteomics database1 and 267 classes to 37 nodes for Academy Sampo

dataset2, see [6] for the presentation results of 24 prominent LOD3 data schemas).

Still, even if graphs with up to 50 or in some cases 80-100 nodes can be potentially

1 https://sparql.nextprot.org/
2 http://ldf.fi/yoma/sparql
3 The Linked Open Data Cloud. https://lod-cloud.net/

2 S.Siliņa et.al

legibly placed on a large diagramming canvas, this might not be the best initial visual

presentation of the data set to its users.

 A natural consideration to construct the visual presentation of large and hetero-

genous datasets would be to consider their fragments. The implementation of Vi-

ziQuer, as described in [6], allows to specify the schema fragments either by restrict-

ing it to a number of largest data classes and properties (as used in [6] in the presenta-

tion of 5 data sets for which the visual presentation of the full schema has not been

possible), or to select manually the classes and properties to be included in the dia-

gram. Neither of these options would be convenient for the users looking for a context

of a particular class resource within the data set.

 In this paper we describe a method for extracting a schema fragment of a specified

(class) size, centered around an initial list of data classes, from a larger data schema

and presenting it to an end user, thereby giving the practical options of visually in-

specting those parts of larger data schemas that are of interest. We note that a mecha-

nistic calculation of classes linked to a given root, although possibly beneficial, can be

expected to give less focused results, if compared to the analysis of the entire data

schema neighborhood considered here.

 A similar problem of finding concepts related to those specified by a user in an

ontology has been looked at in [9], [10].

A related work considering visual presentation of schema fragments in the OWL

ontology notation is [11].

 The implementation described in the paper is included in ViziQuer4, with play-

ground and local setup options described on its website5.

2 Schema Fragment Computation and Visualization

The schema fragment computation starts with selecting a single or several classes

(main classes) as the starting point. In the ViziQuer implementation, the starting clas-

ses are manually selected within the Data Schema parameter dialogue6, followed by

specifying the fragment size (class count) and activating the ‘Get Fragment’ button.

This schema fragment computation approach uses a pre-computed data schema (as

an enriched class-to-property relationship, as described in [6]) to find a fragment of

the desired size. We consider and compare two algorithms for schema fragment com-

putation – a heuristic one, loosely inspired by the PageRank algorithm [12], and a

variant of Personalized PageRank (PPR) [12], where links of both directions are con-

sidered and weighted based on the number of class-property-class triples.

An alternative algorithm to consider is described in [9].

In the heuristic algorithm (which can be termed “Shallow PageRank”), each class

has a certain relevance between 0 and 1, which influences the relevance of its neigh-

bors.

4 https://github.com/LUMII-Syslab/viziquer
5 https://viziquer.lumii.lv
6 cf. Visual Data Schema Diagrams section on https://github.com/LUMII-Syslab/viziquer/wiki

 Schema Fragment Visualization to Describe Knowledge Graph Entities in Context 3

An adjacency list is used to store class-property-class links (retrieved from the data

schema) for each of the classes. We refer to the classes that are selected as part of the

fragment as fragment classes, and to their neighbors that are not yet selected – as

candidate classes. Initially the main classes are also treated as candidate classes with

infinite relevance, while all other classes have 0 relevance. This simplifies the algo-

rithm by reducing the amount of special handling needed for the main classes while

also ensuring they will be selected.

Initially, the fragment is empty and the main classes are candidates. The fragment

is built by selecting classes one at a time.

In each iteration, the most relevant candidate is chosen and added to the fragment.

If the chosen class is one of the main classes, its relevance is changed to 1/m (where

m is the total number of main classes), ensuring proper further calculations of rele-

vance. For each neighboring class n of the chosen class, relevance is increased by Rc

* cpc_c / cpc_cn where Rc is relevance of the chosen class, and:

• cpc_c is the total number of class-property-class triples where one of the

classes is the chosen class;

• cpc_cn is the number of class-property-class triples where one class is the

chosen class, and the other class is its neighbor n.

Lastly, the set of candidates is updated to include the neighbors of the chosen class.

The fragment is complete once it has reached the desired size or there are no more

available candidates.

Fig. 1. A visually presented fragment of a large schema

4 S.Siliņa et.al

Figure 1 shows an example of a visually presented fragment of the Swedish Na-

tional Library database7, containing, at the time of its analysis, 540 data classes, for

which the means of [6] have not been available to produce a visual presentation of the

entire data schema (the strongest compacting means of [6] has produced a schema

graph of 329 nodes that is well above the graph visualization capacity). The fragment

itself has been constructed around the class kbv:Person, specifying 10 as the class

count. A schema diagram with 8 nodes was obtained (due to node merging); the node

corresponding to owl:Class was deleted, resulting in the obtained 7 node diagram.

The presentation of the fragment diagram has been manually tuned after its initial

automatic creation and positioning. Viewing the diagram inside the visual tool would

allow its users to view full lists of class incoming, outgoing and looping attributes in

the respective tool property pane widgets.

Using PPR with a damping factor of 0.85 to construct a fragment of size 10

around the class kbv:Person results in a similar list of classes, the only difference

being that the class kbv:Library (with connections from kbv:Record, kbv:Text,

kbv:Item and kbv:PrimaryContribution) is chosen instead of the class kbv:Role. This

allows to assume a certain robustness of the fragment computation.

A more general comparison experiment was conducted by calculating pairs of

fragments (with one fragment calculated using the Shallow PageRank algorithm and

the other using PPR) surrounding each of the 100 largest classes of the Swedish Na-

tional Library database. Pairs of fragments of sizes 10, 15, 20, 25 and 30 were ob-

tained, and the percentage of shared classes was calculated for each pair. For each

fragment size, cumulative values were calculated to show the number of fragment

pairs that had at least a certain fraction of shared classes (see Fig. 2).

Fig. 2. Number of fragment pairs of various sizes that share at least a certain fraction of classes

7 https://libris.kb.se/sparql

 Schema Fragment Visualization to Describe Knowledge Graph Entities in Context 5

While PPR is a commonly used algorithm that may provide more accurate results

due to performing many iterations to reach convergence, traditionally, the entire graph

should be available. Shallow PageRank approach only requires information of those

class-property-class triples where one of the classes is chosen as part of the final

fragment. Therefore, with the modification of requesting information about a class’s

neighborhood when it is chosen to be part of the fragment instead of calculating the

adjacency list initially, our approach could be a promising alternative in cases when

acquiring the entire graph is too complicated or time-consuming.

For a further comparison, we also considered fragments obtained using ChatGPT8,

taking advantage of the class names in the considered dataset being human-readable

and possible to interpret from the perspective of the general knowledge. The used

prompt asked to, given a list of names of all available classes in the dataset, choose a

certain number of classes that would likely provide the most important supplementary

information about a given main class.

The resulting list of classes for kbv:Person differed significantly from those ob-

tained using the two algorithms and included kbv:Agent, kbv:Contribution,

kbv:PrimaryContribution, kbv:Affiliation, kbv:Occupation, kbv:FieldOfActivity,

kbv:Organization, kbv:Relationship and kbv:Identity. We see that classes with con-

nections to the initial class that are smaller in size (such as kbv:Affiliation,

kbv:Occupation and kbv:FieldOfActivity, which have 437, 1.61K and 2.75K instances

respectively) are also chosen. Since we are interested in the most relevant classes

from the connectivity viewpoint, we consider the class lists obtained by either the

Shallow PageRank algorithm or adapted PPR as suitable solutions for the schema

fragment computation task.

3 Conclusions

The provided prototype implementation of schema fragment visualization has shown

that obtaining and visualizing the fragments of large data schemas is a feasible task,

and that it can help to create semantically focused (on the initial data classes) visual

schema fragment presentations. These presentations can be expected to be of value for

people doing the data analysis, including also people without deep IT experience.

Besides the UI tuning, further work on the fragment creation would involve a study

on the most appropriate criteria for the class ranking for inclusion in the fragment, as

well as experiments with larger data schemas, as e.g., DBPedia.

Retrieving the fragments of the schemas directly from the SPARQL endpoints (in-

stead of using the precomputed schemas [6]) would be another powerful means in the

tool chain of allowing the visual interaction of users with the KG data.

Acknowledgments

This work has been supported by the Latvian Council of Science, project “What’s in

Your Knowledge Graph?” (Project No. lzp-2024/1-0665).

8 https://chatgpt.com/

6 S.Siliņa et.al

References

1. Labra Gayo, J. E., Fernández-Álvarez, D., & Garcıa-González, H.: RDFShape: An RDF

playground based on Shapes. CEUR Workshop Proceedings, vol. 2180 (2018).

2. Lohmann, S., Negru, S., Haag F., Ertl, T.: Visualizing Ontologies with VOWL. In: Seman-

tic Web 7(4), 399-419, (2016)

3. Bārzdiņš, J., Čerāns, K., Liepiņš, R., Sproģis, A.: UML Style Graphical Notation and Edi-

tor for OWL 2. In: Proc. of BIR’2010, LNBIP, Springer 2010, vol. 64, pp. 102-113, (2010)

4. Weise, M., Lohmann, S., & Haag, F. (2016). Ld-vowl: Extracting and visualizing schema

information for linked data. In Voila!2016 (pp. 120-127).

5. Dudáš, M., Svátek, V., Mynarz, J.: Dataset summary visualization with LODSight. In: The

12th Extented Semantic Web Conference (ESWC2015).

6. Lāce, L., Romāne-Ritmane, A., Grasmanis, M., Sproģis, A., Ovčiņņikova, J., Bojārs, U.

and Čerāns, K. Visual Presentation and Summarization of Linked Data Schemas. In: Proc.

of KGSWC 2024, Springer LNCS, Vol.15459, pp.290-305.

7. Čerāns, K., Šostaks, A., Bojārs, U., Ovčiņņikova, J., Lāce, L., Grasmanis, M., Romāne, A.,

Sproģis, A., Bārzdiņš, J.: ViziQuer: A Web-Based Tool for Visual Diagrammatic Queries

Over RDF Data, in Springer LNCS, Vol. 11155. pp. 158–163 (2018).

8. Rabbani, K., Lissandrini, M., & Hose, K.: Extraction of validating shapes from very large

knowledge graphs. In Proc. of the Very Large Databases 2023, 16(5), pp.1023-1032.

9. Chen, Y., Yang, X., Yin, K.: Identifying potentially user-interested concepts in an onto-

logy. In: 2009 Asia-Pacific Conference on Computational Intelligence and Industrial Ap-

plications (PACIIA).

10. Queiroz-Sousa, P. O., Salgado, A. C., Pires, C. E.: A method for building personalized on-

tology summaries. In: Journal of Information and Data Management, 4(3), 236-236 (2013).

11. Liepins R, Cerans K, Sprogis A. Visualizing and editing ontology fragments with

OWGrEd. In: CEUR Workshop Proceedings vol 932(2012), pp. 22-25.

12. Page, L., Brin, S., Motwani, R., Winograd, T.: The PageRank Citation Ranking: Bringing

Order to the Web. Stanford InfoLab, (1999)

