
ViziQuer Data Schema outline

The figure shows abstract syntax of ViziQuer schema information.

There are entities: classes, properties and data-types in the data model, identified by their

full names (URIs) and equipped with local names, optionally with prefixes. Every role comes

with a list of its applicability contexts (“schema roles”), consisting of source and target

classes, for every attribute there is a datatype and a list of applicability contexts. The

minimum and maximum cardinalities can be specified both at the property level and at the

level of its applicability context; the strongest of the cardinalities are considered. The

entities can be annotated.

Note. The semantics of RDFS/OWL domain and range assertions does not make them

directly suitable for encoding the assertions of a property applicability within the context of

a particular class. Therefore, a custom knowledge-graph style format has been chosen for

data meta-schema organization; the interchange with OWL/RDF format is organized by

means of data import and export (e.g. the schema can be retrieved from and OWL ontology,

as well as the working tool data schema can be saved into OWL format).

The following JSON structure is recognized by the ViziQuer tool as an exchange format for

schema import and export.

Namespace: -- default namespace

Prefixes: -- extra namespace prefixes

 Prefix(*):

 prefix

 namespace

Classes:

 Class(*):

 localName

 prefix(0..1)

 fullName(0..1)

 SuperClasses

 SuperClass(*):

 [prefix ‘:’] localName | fullName

Attributes:

VQ_Model

VQ_Entity
localName:string[1]

/fullName:string[1]
Annotation

name:string[1]

value:string[1]

Datatype

VQ_PropertySchema
minSchemaCard:string[0..1]

maxSchemaCard:string[0..1]

orderInx:integer[1]

VQ_Class

VQ_Property
minCardinality:string[0..1]

maxCardinality:s tring[0..1]

VQ_Attribute
VQ_AttribSchema

VQ_RoleSchema VQ_Role

NamePrefix
prefixText:string[1]

URI:string[1]

isDefault:boolean[1]

entity

prefix

0..1

defPrefix

*

superClass

source1

schemaRole

target

0..1

schemaAttribute

type0..1

note *

 Attribute(*):

 localName

 prefix(0..1)

 fullName(0..1)

 type(0..1)

 minCardinality(0..1)

 maxCardinality(0..1)

 SourceClasses:

 Class(*):

 [prefix ‘:’] localName | fullName

Associations:

 Association(*):

 localName

 prefix(0..1)

 fullName(0..1)

 minCardinality(0..1)

 maxCardinality(0..1)

 ClassPairs:

 ClassPair(*):

 SourceClass:

 [prefix ‘:’] localName | fullName

 TargetClass:

 [prefix ‘:’] localName | fullName

 inverseRole(0..1):

 [prefix ‘:’] localName | fullName

 minCardinality(0..1)

 maxCardinality(0..1)

An entity has to be specified either by its full name, or by a local name and an optional prefix

(a missing prefix indicates that the entity is from the default namespace).

Should a matching prefix for an entity specified by full URI be missing from the prefix table,

an auto-generated prefix would be introduced into the tool environment.

The inverse role specification applies for the both roles in the specified class name pair

contexts only.

The cardinality information may be used in SPARQL query composition optimisation, as well

as by the query environment.

We have minimised reliance on cardinalities in query generation, however, we have plans to

exploit cardinalities by the query environment.

If cardinality is not specified, then maxCardinality is assumed to be 1 for an attribute and

unlimited for an association; minCardinality is assumed to be 0 in both cases. To specify

unlimited maxCardinality cardinality for an attribute, set its value to be -1.

